Physiology

- The internal systems of metabolism and excretion, which sustain daily activities and adapt individuals to their environment, are collectively called physiology.

Birds are high performance vertebrates

- The power and endurance for flight are made possible by high metabolic rates.
- High metabolic rates are costly:
 - High constant body temp
 - High energy consumption
 - High water consumption
- Many unique adaptations:
 - Temperature regulation
 - Water conservation
 - Respiratory system
 - Circulatory system

Why high temperature?

- Birds average 41°C:
 - Cost = energy, O₂, waste
 - 20 – 30X > reptiles
 - Proteins break down at 46°C

Why?

- Rates of physiological processes increase:
 - Nerve impulses 1.8X/10°C
 - Muscle contraction 3X/10°C

Adaptations of the respiratory system

- Air sacs:
 - Throughout body, even wing and leg bones
 - 1-2 cells thick
 - Allows unidirectional air flow
Flow-through lungs

- Two full in/out respirations required before air is exhaled
- Fresh air passes over the lungs continuously

Adaptations of the circulatory system

- 4-chambered heart
- Compared to mammals
 - 50 – 100% larger
 - Heart rates slower but blood flow similar due to larger stroke volume
 - Blood pressure 2X higher

Metabolic adaptations

- Metabolic rate is inversely related to mass
- The primary cause is the relationship between surface area and volume

Temperature regulation

- TNZ – metabolic rate does not change with temp
- <LCT – metabolic rate increases to raise temp, shivering
- >UCT metabolic rate increases to lower temp, evaporative cooling
Response to cold stress

- Acclimatization
- Behavior
- Hypothermia and torpor

Response to heat stress

- Adaptations
 - Evolutionary
 - Behavioral
 - Anatomical
- Evolutionary
 - Downy Woodpecker: body size increases with latitude, but birds in hot humid Mississippi Valley are smaller than birds at similar latitudes to the east or west

Response to heat stress

- Behavioral
 - Exposing bend of wing
 - Panting
 - Wetting abdomen
 - Exposing legs
 - Raising or lowering feathers

Response to heat stress

- Anatomical Adaptations
 - Gular fluttering
 - Shunt and counter-current blood flow to feet
Water economy

- High body temperature and reliance on evaporative cooling require water
 - Small species lose >35% of body weight/day due to evaporative cooling
 - Rates of water loss increase dramatically when temperature increases

Excretory system aids water economy

- Birds excrete nitrogen as uric acid vs urea (mammals)
 - Uric acid is a paste with 2X concentration of nitrogen and 20X savings in water vs urea
 - Cloaca reabsorbs water to yield concentrations of uric acid 3000X that found in blood

Salt glands conserve water