A NEW COMBINATION IN MATELEA (APOCYNACEAE: ASCLEPIADOIDEAE) FOR AN ENDEMIC JAMAICAN VINE

Alexander Krings

Herbarium, Department of Botany
North Carolina State University
Raleigh, North Carolina 27695-7612, U.S.A.
Alexander_Krings@ncsu.edu

ABSTRACT

A new combination in Matelea (Apocynaceae: Asclepiadoideae) for an endemic Jamaican vine is proposed.

RESUMEN

Se propone una combinación nueva en Matelea (Apocynaceae: Asclepiadoideae) para una trepadora endémica de Jamaica.

Critical study of West Indian specimens of subtribe Gonolobinae (Apocynaceae: Asclepiadoideae) has resulted in the need for a new combination for an endemic Jamaican vine:

The critical character defining placement in Gonolobus Michx.—dorsal anther appendages (Woodson 1941; Rosatti 1989; Stevens 2001)—is lacking, although mistakenly attributed to the species by Adams (1972). Other characters that have been used to refer taxa to Gonolobus include winged follicles and the absence of glandular hairs (see Woodson 1941). Follicles are unknown for Matelea rhamnifolia, although suspected to be winged, not muricate, based on its affinities to M. correllii Spellman. The follicle character is moot, however, as few fruit collections were apparently available to Woodson (1941) and more recent analysis has shown the character not to be useful in generic delimitation (Krings, unpubl.). Glandular hairs, although thought characteristic of Matelea Aubl. by Woodson (1941), are also without circumscriptional value in the Gonolobus-Matelea question, being present in both the type of Gonolobus Michx. (i.e., G. suberosus (L.) R. Br.) and numerous species lacking dorsal anther appendages (Rosatti 1989), including M. rhamnifolia.

The Jamaican endemic Matelea rhamnifolia appears most closely related to the Cuban endemic M. nipensis (Urb.) Woodson (at least among West Indian taxa); both likely belonging to a complex also including the Cuban endemics
Fig. 1. Corona and gynostegium morphology of: (A) the Jamaican endemic *Matelea rhamnifolia* (from Proctor 11825, GH) and the related (B) Cuban endemic *M. nipensis* (from Webster 3813, GH) and (C) Bahaman endemic *M. correllii* (from Spellman 1978). Note absence of dorsal anther appendages in all three species. **an**=anther; **ic**=inner corona; **oc**=outer corona; **pc**=pollinium cavity.
M. bayatensis (Urb.) Woodson and M. tigrina (Griseb.) Woodson and the Bahaman endemic M. correllii. Matelea rhamnifolia and M. nipensis share oblong leaves that are basally truncate or rounded, reduced peduncles, short corolla lobes, and gynostegial coronas of similar morphology. Both species exhibit a low, somewhat undulating outer corona which subtends an inner corona and the associated staminal tube (Fig. 1A, B). The same morphology is present in M. correllii and was well-illustrated in the protologue of this latter species (Fig. 1C). The corolla lobes of both M. rhamnfolia and M. nipensis are also reticulate (at least when dry) and bear a white spot at each of the apices – both characters shared by the larger-flowered members of the complex mentioned above and the continental M. pusilliflora L.O. Williams. Matelea rhamnifolia is distinguished from M. nipensis by its larger leaves, a longer and more well-developed floral tube (ca. 1.3 mm vs. ≤ 0.5 mm), and a shorter filament tube (0.5 mm vs. 0.7 mm).

Representative specimens examined: Matelea nipensis (Urb.) Woodson: CUBA: Ekman 9710 (ISOTYPES: NY, S); Berazain & Alvarez 24357 (HAJB); Clemente 4342 (NY); Webster 3813 (GH). Matelea rhamnifolia (Griseb.) Krings: JAMAICA: Alexander s.n. (HOLOTYPE: GOET); Proctor 11825 (GH, IJ).

ACKNOWLEDGMENTS

I thank the curators and staff of the following herbaria for access to their collections or loans of specimens: BH, BM, BOLO, BREM, BRIT, C, CGE, DUKE, E, F, FI, FLAS, FR, FTG, G, GA, GH, GOET, H, HAC, HAJB, HBG, IJ, JE, K, KY, LL, M, MICH, MIN, MISS, MO, NCU, NO, NY, O, OK, OXF, PH, RSA, S, TENN, TEX, U, UC, UNA, US, USCH, USF, WILLI, WU, Z. I also thank the curators and staff of the following herbaria for searching their collections for West Indian Gonolobinae material, although finding no representation: BG, BKL, BR, BUF, COLO, CR, FLAS, IA, ISC, LD, MSU, NEU, NSW, UPS, TUR. Guy Nesom and an anonymous reviewer provided helpful comments on an earlier version of this paper.

REFERENCES