Statistical Analysis: The Vibrating Beam Example

Surajit Ray Minjung Kyung Jiezhun (Sherry) Gu
Statistical Analysis

Our Goal

- Estimate σ^2 (the variance of the measurement error)
- Estimate the standard errors for the estimates of the parameters
 - **Two Parameter setup** C and K
 - **Two Parameter setup** $C, K, y(0), v(0)$.
- Graphically examine whether the least squares assumptions hold.
Our Model

- The mass-spring-dashpot model

\[\frac{d^2y(t)}{dt^2} + C \frac{dy(t)}{dt} + K y(t) = 0 \]

- Let \(a(t) = \frac{d^2y(t)}{dt^2} \) and \(v(t) = \frac{dy(t)}{dt} \), then

\[a(t) = -Cv(t) - Ky(t) \] (1)
Recall that for the simple linear model
\[Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \]
we estimated the covariance matrix of \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) using
\[
\text{Cov}(\hat{\beta}_0, \hat{\beta}_1) = (X'X)^{-1}\hat{\sigma}^2
\]
where
\[
X = \begin{bmatrix}
1 & X_1 \\
1 & X_2 \\
\vdots & \vdots \\
1 & X_n \\
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial Y_1}{\partial \beta_0} & \frac{\partial Y_1}{\partial \beta_1} \\
\frac{\partial Y_2}{\partial \beta_0} & \frac{\partial Y_2}{\partial \beta_1} \\
\vdots & \vdots \\
\frac{\partial Y_n}{\partial \beta_0} & \frac{\partial Y_n}{\partial \beta_1} \\
\end{bmatrix}.
\]
Estimation of the S. E.: Our Model

\[
\text{Cov}(\hat{C}, \hat{K}) = (X'X)^{-1}\hat{\sigma}^2
\]

where

\[
X = \begin{bmatrix}
\frac{\partial y(t_1)}{\partial C} & \frac{\partial y(t_1)}{\partial K} \\
\frac{\partial y(t_2)}{\partial C} & \frac{\partial y(t_2)}{\partial K} \\
\vdots & \vdots \\
\frac{\partial y(t_n)}{\partial C} & \frac{\partial y(t_n)}{\partial K}
\end{bmatrix}
\]

The standard errors of \(\hat{C} \) and \(\hat{K} \) are the square roots of the diagonal elements of \(\text{Cov}(\hat{C}, \hat{K}) \).
Estimation of the Standard Error (Change)

- To compute the standard errors of \hat{C} and \hat{K}, first, we need to compute $\frac{\partial y(t)}{\partial C}$ and $\frac{\partial y(t)}{\partial K}$ (to get the columns of X matrix).

- Using the chain rule for differentiation, we get the relation

$$\frac{\partial a(t)}{\partial C} = -v(t) - C \frac{\partial v(t)}{\partial C} - K \frac{\partial y(t)}{\partial C}$$

and

$$\frac{\partial a(t)}{\partial K} = -C \frac{\partial v(t)}{\partial K} - y(t) - K \frac{\partial y(t)}{\partial K}$$

- We need to compute $\frac{\partial y(t)}{\partial C}$, $\frac{\partial y(t)}{\partial K}$, $\frac{\partial v(t)}{\partial K}$ and $\frac{\partial v(t)}{\partial K}$.
Sensitivity Equations (Change)

How do we compute $\frac{\partial y(t)}{\partial C}$, $\frac{\partial y(t)}{\partial K}$, $\frac{\partial v(t)}{\partial K}$, and $\frac{\partial v(t)}{\partial K}$, if we don’t have an analytical expression for $y(t)$ or $v(t)$?

- Solve a new system of differential equations, called the sensitivity equations.
Sensitivity Equations (Change)

To make the following derivation clearer, we will omit from our notation the dependence of \(y \) and \(v \) on \(t \).

\[
\frac{dy}{dt} = v \tag{2}
\]

and

\[
\frac{dv}{dt} = -Cv - Ky. \tag{3}
\]

Differentiating Equation (3) with respect to \(C \) and \(K \) and interchanging the order of derivatives on the left hand side gives

\[
\frac{d}{dt} \left[\frac{\partial y}{\partial C} \right] = \frac{\partial v}{\partial C}. \tag{4}
\]

\[
\frac{d}{dt} \left[\frac{\partial y}{\partial K} \right] = \frac{\partial v}{\partial K}. \tag{5}
\]
Differentiating Equation (3) with respect to C and K gives

$$\frac{d}{dt} \left[\frac{\partial v}{\partial C} \right] = -v - C \left[\frac{\partial v}{\partial C} \right] - K \left[\frac{\partial y}{\partial C} \right]. \quad (6)$$

$$\frac{d}{dt} \left[\frac{\partial v}{\partial K} \right] = -C \left[\frac{\partial v}{\partial K} \right] - y - K \left[\frac{\partial y}{\partial K} \right]. \quad (7)$$

Equations (5)-(8) are the four sensitivity equations.

The sensitivity equations, along with the original two equations for y and v can be solved by the Matlab function, `ode`.
Checking the Model Assumptions

- If the model is appropriate for the data at hand, the observed residuals e_i should reflect the properties assumed for the ε_i.

- Residuals can be used to detect departures from the model
 - A residual plot against the fitted values can be used to determine if the error terms have a constant variance.
 - A plot of the residuals with time can be used to check for non-independence over time. When the error terms are independent, we expect them to fluctuate in a random pattern around 0.
 - Plot of quantiles of residuals against the quantiles of a normal: **QQPlot** to check normality of errors.