Introduction to the Forward Problem: Solving the Harmonic Oscillator Equation

The mathematical model for the Harmonic Oscillator or Spring-Mass-Dashpot system is given by

\[m \frac{d^2 y(t)}{dt^2} + c \frac{dy(t)}{dt} + ky(t) = 0 \quad \text{or} \quad m\ddot{y}(t) + c\dot{y}(t) + ky(t) = 0 \]

with initial conditions

\[y(t_0) = y_0, \quad \dot{y}(t_0) = v_0 \]

where \(y(t) \) is the vertical displacement of the mass about the equilibrium position. \(m \) is the mass, \(c \) is the damping constant, and \(k \) is the spring constant. With \(m \neq 0 \), we can set \(C = \frac{c}{m} \) and \(K = \frac{k}{m} \) and rewrite the model as

\[\ddot{y}(t) + C\dot{y}(t) + Ky(t) = 0 \]

where the initial conditions remain the same.

1 Undamped Case: \(c = 0 \)

Because there is no damping term for the undamped case, the formula we use is

\[m\ddot{y}(t) + ky(t) = 0. \]

Using the characteristic equation \(mr^2 + k = 0 \), we get

\[y(t) = A \cos \omega t + B \sin \omega t, \quad \omega = \sqrt{k/m}. \]

This can also be written

\[y(t) = A \sin(\omega t + \phi) \]

where \(A = \sqrt{A^2 + B^2} \) and \(\phi = \tan^{-1}(A/B) \). \(A \) and \(B \) can be found using the initial conditions, where \(A = y_0 \) and \(B = \frac{v_0}{\omega} \).

Figure 1: This is an undamped harmonic oscillator.
2 Damped Case: \(c \neq 0 \)

Using the characteristic equation \(mr^2 + cr + k = 0 \), we get

\[y(t) = e^{-\frac{c}{2m}t} \left[A \cos \omega t + B \sin \omega t \right], \quad \omega = \frac{\sqrt{4mk - c^2}}{2m} \]

where \(c^2 < 4mk \). This can also be written

\[y(t) = e^{-\frac{c}{2m}t} A \sin(\omega t + \phi) \]

where \(A = \sqrt{A^2 + B^2} \) and \(\phi = \tan^{-1}(A/B) \). \(A \) and \(B \) can be found using the initial conditions, where \(A = y_0 \) and \(B = \frac{v_0 + \omega \left(y_0 \right)}{\omega} \).

![Figure 2: This is a damped harmonic oscillator.](image1)

![Figure 3: This is also a damped harmonic oscillator, but with a higher damping term.](image2)