Statistical Analysis related to the Inverse problem

Se Hee Kim and Lingsong Zhang
SAMSI/CRSC Undergraduate Workshop
Review of the Inverse problem

• What we get
 – Displacement \(y_i \) and time \(t_i \)
 – Spring model

\[
\frac{d^2 y(t)}{dt^2} + C \frac{dy(t)}{dt} + Ky(t) = 0
\]

• Target:
 Estimate \(C \) and \(K \) based on the observed \(y_i \)
Review of the Inverse Problem (cont.)

- **Estimation procedure**
 - Minimize the cost function
 \[
 J(C, K) = \frac{1}{2} \sum_{i=1}^{N} (y_i - y(t_i, C, K))^2
 \]
 - Guess initial values of C and K
 - Using optimization method and differential equations to find the values of C and K which minimize the above cost function.
 - `inv_beam.m`
Underlying Statistical Models

• y_i has measurement error
 – The above model can be viewed as a regression model
 \[y_i = y(t_i, C, K) + \varepsilon_i \]
 where ε_i are iid (independent identically distributed) from $N(0, \sigma^2)$.

 – Estimating C and K leads to the procedure mentioned earlier (will show later)
Nonlinear regression

• Linear
 – Linear is for the parameter(s)
 \[y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \]

• Nonlinear
 – \(y(t_i, C, K) \) are defined by an ODE, it is not from a simple linear function of \(C \) and \(K \)
 – A regression model is called **nonlinear**, if the derivatives of the model with respect to the model parameters **depend on one or more parameters**
Nonlinear regression

• A regression model is not necessarily nonlinear if the graphed regression trend is curved

 – Example: \(y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon \)

 – Take derivatives of \(y \) with respect to the parameters \(\beta_0, \beta_1 \) and \(\beta_2 \):

 \[
 \frac{\partial y}{\partial \beta_0} = 1, \quad \frac{\partial y}{\partial \beta_1} = x, \quad \frac{\partial y}{\partial \beta_2} = x^2
 \]

 – None of these derivatives depend on a model parameters, thus the model is linear.
Nonlinear regression

- The general form of a nonlinear regression model is

\[y = \eta(x, \beta) + \varepsilon \]

- Where \(x \) is a vector of explanatory variables, \(\beta \) is a vector of unknown parameters and \(\varepsilon \) is a \(\text{N}(0, \sigma^2) \) error term

- To estimate unknown parameters,

\[
\min_{\beta} \sum_{i=1}^{n} (y_i - \eta(x_i, \beta))^2
\]
Statistical problems

• How to evaluate the estimation of C and K?
 – Estimation of σ.
 – Variation of the \hat{C} and \hat{K}.

• Are those assumptions correct?
 – Measurement errors are truly from iid Normal distribution?
 – Are there better models?
Estimation of σ

- If all model assumptions hold

 we have $\hat{\varepsilon}_i = y_i - y(t_i, \hat{C}, \hat{K})$

 Use these to estimate σ

 \[\hat{\sigma}^2 = \frac{1}{n - 2} \sum_{i=1}^{n} \hat{\varepsilon}_i^2 \]

 Our data set gives

 $\hat{\sigma} = 1.0407 \times 10^{-5}$

YOURS? \hspace{1cm} estimateofsigma.m
Evaluate the Estimation of C and K

- **Method 1 - repeating experiments**
 - Independent experiments under the same conditions
 - How many experiments required?
 - *we will use 8 sets of data to illustrate this method*

 - Use simple univariate statistics of C’s and K’s to evaluate the performance of estimation.
Examples

- 8 sets of data from the same conditions
 - Get the estimations of C and K
 - Variations of C and K
 - $\text{sd}(C)=.2675$
 - $\text{sd}(K)=4.3437$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>K</td>
</tr>
<tr>
<td>0.89710</td>
<td>1526.9</td>
</tr>
<tr>
<td>1.04680</td>
<td>1526.8</td>
</tr>
<tr>
<td>0.90619</td>
<td>1528.3</td>
</tr>
<tr>
<td>0.89321</td>
<td>1530.2</td>
</tr>
<tr>
<td>1.63440</td>
<td>1518.7</td>
</tr>
<tr>
<td>0.86776</td>
<td>1527.0</td>
</tr>
<tr>
<td>0.78324</td>
<td>1531.4</td>
</tr>
<tr>
<td>1.03730</td>
<td>1533.0</td>
</tr>
<tr>
<td>1.00820</td>
<td>1527.8</td>
</tr>
</tbody>
</table>
Examples

- 8 sets of data from the same conditions
 - Get the estimations of C and K
 - Variations of C and K
 $sd(C) = 0.2675$
 $sd(K) = 4.3437$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.89710</td>
<td>1526.9</td>
</tr>
<tr>
<td>2</td>
<td>1.04680</td>
<td>1526.8</td>
</tr>
<tr>
<td>3</td>
<td>0.90619</td>
<td>1528.3</td>
</tr>
<tr>
<td>4</td>
<td>0.89321</td>
<td>1530.2</td>
</tr>
<tr>
<td>5</td>
<td>1.63440</td>
<td>1518.7</td>
</tr>
<tr>
<td>6</td>
<td>0.86776</td>
<td>1527.0</td>
</tr>
<tr>
<td>7</td>
<td>0.78324</td>
<td>1531.4</td>
</tr>
<tr>
<td>8</td>
<td>1.03730</td>
<td>1533.0</td>
</tr>
<tr>
<td>9</td>
<td>1.00820</td>
<td>1527.8</td>
</tr>
</tbody>
</table>

After removing the “outlier”

$sd(C) = 0.0937$, $sd(K) = 2.4828$
Exercise

• To get the standard deviations from your 10 data sets (std)
 – If you do not have the record of estimations,
 • Use `inv_beam_all.m` to get $Cvec, Kvec$,
 \[(it \ will \ take \ a \ long \ time, \ do \ it \ during \ the \ break) \]
 – If you have the record of the estimations
 – Input them into $Cvec$ and $Kvec$,

• Bar-chart?
 – Try `barCvec.m` and `barKvec.m` (need to adjust some numbers)
Evaluate the Estimation (cont.)

• Method 2 - Using the nonlinear regression model to evaluate the estimation of C and K.
 – How to get the standard deviation (or variance) of \hat{C} and \hat{K}?

 Use the covariance matrix of (\hat{C}, \hat{K})
Recall: Linear Regression

• Simple Linear Model:
 – The model

\[Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \]

we estimate the covariance matrix of \(\beta_0 \) and \(\beta_1 \) using

\[\text{Cov}(\hat{\beta}_0, \hat{\beta}_1) = (X'X)^{-1}\hat{\sigma}^2 \]

where

\[
X = \begin{pmatrix}
1 & X_1 \\
1 & X_2 \\
\vdots & \vdots \\
1 & X_n \\
\end{pmatrix} = \begin{pmatrix}
\frac{\partial Y_1}{\partial \beta_0} & \frac{\partial Y_1}{\partial \beta_1} \\
\frac{\partial Y_2}{\partial \beta_0} & \frac{\partial Y_2}{\partial \beta_1} \\
\vdots & \vdots \\
\frac{\partial Y_n}{\partial \beta_0} & \frac{\partial Y_n}{\partial \beta_1} \\
\end{pmatrix}
\]
Apply to the inverse problem

Our model \[y_i = y(t_i, C, K) + \varepsilon_i \]
we will have similar result
\[\text{Cov}(\hat{C}, \hat{K}) = (X'X)^{-1}\hat{\sigma}^2 \]
where
\[
X = \begin{pmatrix}
\frac{\partial y(t_1)}{\partial C} & \frac{\partial y(t_1)}{\partial K} \\
\frac{\partial y(t_2)}{\partial C} & \frac{\partial y(t_2)}{\partial K} \\
\vdots & \vdots \\
\frac{\partial y(t_n)}{\partial C} & \frac{\partial y(t_n)}{\partial K}
\end{pmatrix}
\]
the standard errors of \(\hat{C} \) and \(\hat{K} \) are square roots of the diagonal elements of \(\text{Cov}(\hat{C}, \hat{K}) \)
Checking the Assumptions

• Check whether the residuals are iid Normal noise
 – Independent?
 • Residual plot vs Time

 – Variance are constant?
 • Residual plot vs. fitted values

 – Residuals are Normally distributed?
 • Normal Quantile-Quantile plot
Checking dependency
Checking Constant Variance
Checking Normality
Other models?

• Is the spring model appropriate for our data?
 – Residual shows dependent structure
 – It seems that variances are not equal
 – Normal assumption might not hold

• Other statistical inference method?
 – Same underlying model, but different assumptions
 – Other statistical models to fit the data

• Some alternative physical models for our data?