Integrating Mathematical and Statistical Models

- Recap of mathematical models
- Models and data
- Statistical models and sources of variation
Recap of mathematical models

Deterministic models: For the purposes of this discussion, we will consider *mathematical models* of the following form

- **System** \(\dot{x}(t) = g\{t, x(t), \theta\} \)
- **Solution** \(y = x(t, \theta) \)

- \(x(t) \) is the vector whose elements correspond to *states* of a system of interest at time \(t \)
- \(\dot{x}(t) \) is the vector of derivatives of the elements of \(x(t) \) (ODEs)
- Often arise from a *compartmental model* of the system (a gross simplification)

Some examples...
Recap of mathematical models

Example 1: *Pharmacokinetics* *(PK)* of a drug

- **Pharmacokinetics**: “What the body does to the drug”

- **ADME processes**: *absorption, distribution, metabolism, excretion* (metabolism + excretion = *elimination*) – dictate the *concentrations of drug* in the body

- Critical to understand (*quantify*) ADME processes in the development of *dosing recommendations*

- **Premise**: Measure concentrations of drug in the blood over time and use these to learn about ADME processes
Recap of mathematical models

ADME:

Routes of drug administration: *Intravenously, orally, intramuscularly, subcutaneously,...*
Recap of mathematical models

Pharmacokinetics of theophylline: Anti-asthmatic agent

- Common deterministic model: *One compartment model with first-order absorption and elimination* following *oral* dose D at $t = 0$

- $A(t) =$ amount of drug in the “*blood compartment*” at time t (“*well-mixed*”)

\[
D \xrightarrow{k_a} A(t) \xrightarrow{k_e}
\]

- **Assumption**: $A(t) = V C(t)$ (constant relationship between drug concentration $C(t)$ and amount of drug in body $A(t)$ for all t)
Recap of mathematical models

System: Letting $A_a(t)$ be the amount of drug at the absorption site at time t

\[
\dot{A}(t) = k_a A_a(t) - k_e A(t)
\]
\[
\dot{A}_a(t) = -k_a A_a(t)
\]

with initial conditions $A_a(0) = A_{a0} = FD$, $A(0) = A_0 = 0$, where F is the fraction available (take $F \equiv 1$ for simplicity)

- $x(t) = \{A(t), A_a(t)\}^T$, $\dot{x}(t) = \{\dot{A}(t), \dot{A}_a(t)\}^T = g\{t, x(t), \theta\}$

\[
g\{t, x(t), \theta\} = \begin{pmatrix} k_a A_a(t) - k_e A(t) \\ -k_a A_a(t) \end{pmatrix}, \quad \theta = (k_a, k_e)^T
\]

Solution: Expression for $A(t)$ [and $A_a(t)$] may be found analytically in a **closed form**
Laplace transform of $A(t)$: $\mathcal{L} A = \int_0^\infty e^{-st} A(t) \, dt$

\[
s \mathcal{L} A - A_0 = k_a \mathcal{L} A - k_e \mathcal{L} A \quad (1)
\]
\[
s \mathcal{L} A_a - A_{a0} = -k_a \mathcal{L} A_a \quad (2)
\]

- Solve (2) for $\mathcal{L} X_a$ and substitute in (1) to obtain

\[
\mathcal{L} A = \frac{k_a FD}{(s + k_e)(s + k_a)}
\]

- From a table of Laplace transforms, we find immediately that

\[
A(t) = \frac{k_a FD}{k_a - k_e} \left\{ e^{-k_e t} - e^{-k_a t} \right\}
\]

so that (divide by V)

\[
C(t) = \frac{k_a FD}{V(k_a - k_e)} \left\{ e^{-k_e t} - e^{-k_a t} \right\}
\]
Recap of mathematical models

Result: If the model is *perfectly correct*, the relationship

\[
C(t) = \frac{k_a F D}{V (k_a - k_e)} \{e^{-k_e t} - e^{-k_a t}\}
\]

should describe concentration of drug at time \(t\) *within a single subject* to whom oral dose \(D\) was administered at time \(t = 0\)

- The expression for \(C(t)\) involves three *parameters* \(\theta = (k_a, k_e, V)^T\).
- If we *knew\(\theta*, could predict concentration at any time \(t\) following any oral dose \(D\) for this subject (*dosing recommendations*).
- Based on *data* (concentrations over time), could learn about *unknown* \(\theta* for this subject.
- More shortly...
Recap of mathematical models

For example: With $k_a = 0.7$, $k_e = 1.1$, $V = 0.4$
Recap of mathematical models

Data: From a single subject

Subject 12

![Graph showing theophylline concentration over time for Subject 12](image)
Example 2: Dynamics of HIV under antiretroviral therapy (ARV)

- HIV (Human immunodeficiency virus) infects target cells in the immune system and uses them to produce more virus (that then infects more cells...)
- The immune system responds to remove infected cells
- A model describes the interplay between HIV and immune system taking place within a single subject over time
- Can use to predict progression of infection under different ARV regimens
- Reverse transcriptase inhibitor (RTI) blocks infectious virus from infecting target cells
- Protease inhibitor (PI) causes infected cells to produce non-infectious virus
Recap of mathematical models

Possible model for within-subject dynamics:
Typical model components:

- T_1, T_1^*: Type 1 target cells (e.g., CD4$^+$ T cells), uninfected, infected
- T_2, T_2^*: Type 2 target cells (e.g., macrophages), uninfected, infected
- V_I, V_{NI}: Infectious and non-infectious free virus
- E: Cytotoxic T-lymphocytes

- Uninfected cells (T_j) become infected (T_j^*) via encounters with infectious virus (V_I); infection rates k_j
- Uninfected cell source rates λ_j and natural death rates d_j
- Infected cell death rate δ; each cell produces N_T virions
- Virus natural death rate c
- $\epsilon_1, f\epsilon_2$ govern efficacy of RTI in blocking new infections of T_1, T_2
- $\epsilon_2, f\epsilon_2$ govern efficacy of PI in causing T_1^*, T_2^* to produce non-infectious virus
Recap of mathematical models

Mathematical model: 7 compartments (states)

\[
\begin{align*}
\dot{T}_1 &= \lambda_1 - d_1 T_1 - \{1 - \epsilon_1 u(t)\} k_1 V_I T_1 \\
\dot{T}_2 &= \lambda_2 - d_2 T_2 - \{1 - f \epsilon_1 u(t)\} k_2 V_I T_2 \\
\dot{T}_1^* &= \{1 - \epsilon_1 u(t)\} k_1 V_I T_1 - \delta T_1^* - m_2 E T_1^* \\
\dot{T}_2^* &= \{1 - f \epsilon_1 u(t)\} k_2 V_I T_2 - \delta T_2^* - m_2 E T_2^* \\
\dot{V}_I &= \{1 - \epsilon_2 u(t)\} 10^3 N_T \delta (T_1^* + T_2^*) - c V_I - \{1 - \epsilon_1 u(t)\} \rho_1 10^3 k_1 T_1 V_I \\
&\quad - \{1 - f \epsilon_1 u(t)\} \rho_2 10^3 k_2 T_2 V_I \\
\dot{V}_{NI} &= \epsilon_2 u(t) 10^3 N_T \delta (T_1^* + T_2^*) - c V_{NI} \\
\dot{E} &= \lambda_E + \frac{b_E (T_1^* + T_2^*)}{(T_1^* + T_2^*) + K_b} E - \frac{d_E (T_1^* + T_2^*)}{(T_1^* + T_2^*) + K_d} E - \delta_E E
\end{align*}
\]

- $\theta = (\lambda_1, d_1, \epsilon_1, k_1, \ldots)$ plus initial conditions

\[
\{T_1(0), T_2(0), T_1^*(0), T_2^*(0), V_I(0), V_{NI}(0), E(0)\}
\]

- $u(t) = \text{ARV input at } t (0 \leq u(t) \leq 1, 0 \text{ off, } 1 \text{ on})$
Recap of mathematical models

Thus:

\[x(t) = \{ T_1(t), T_2(t), T_1^*(t), T_2^*(t), V_I(t), V_{NI}(t), E(t) \}^T \]

\[\dot{x}(t) = g\{ t, x(t), \theta \} \quad \text{as on previous slide} \]

- Usual data: \textbf{CD4}^+ \textit{T cell count} = T_1 + T_1^*, \textit{viral load} = V_I + V_{NI}

- So only \textit{observe} some of the states (and do not observe any state explicitly)

- More later...
Recap of mathematical models

Patient #14

CD4+ T-cells / ul

0 200 400 600 800 1000 1200 1400 1600

0 500 1000 1500

data
fit w/half
fit w/all

virus copies/ml

10^0 10^5

0 200 400 600 800 1000 1200 1400 1600
time (days)
Recap of mathematical models

Again:

• If we knew θ, could predict *viral load*, *CD4 count*, etc, at any time t under different ARV regimens

• If we had *data* on CD4 counts, viral load under a known regimen followed by the subject, could learn about *unknown* θ for this subject (we hope)

• Could use this framework to *design* ARV regimens

• In particular, *adaptive regimens* that use what is known about the subject so far to dictate the best thing to do next

• More later in the course...
Models and data

Goals of (mathematical) modeling:

• Describe (quantitatively) known and hypothesized mechanisms governing behavior of a system of interest. . .

• . . . recognizing that the model is a simplified depiction of the real system that we would like to understand

• Use the models with data (i.e., observations on the real system) to learn about underlying mechanisms

Forward solution: Given θ, predict observations on the system over time

• Need to solve to obtain expressions for the states at any time t

• Simple models: A closed form expression available for all states at any t

• More complex models: Solution at any time t must be obtained numerically
Models and data

Inverse problem: Given observations on the system over time, determine the (unknown) θ governing them

- i.e., observe *data* on the system over time: record y_1, \ldots, y_n at times $0 \leq t_1 < \cdots < t_n$ on $x(t_1), \ldots, x(t_n)$

- Statisticians call this *parameter estimation*

- Primary focus in much of this course is the *inverse problem*

- *Ideally:* Observe *all states* over time, as above (y_j are *vectors*)

- *In reality:* Observe only some states (PK example) or functions of some states (HIV example)

For now: Will start with simplest case of PK example, where y_1, \ldots, y_n are *scalar* observations on a single state, then *generalize*
Critical issue: Data are subject to variation and uncertainty

- Indeed, observations usually do not track exactly on \(y = x(t, \theta) \)
- Must recognize this and take it into appropriate account
- Statistical inference

Notation:

- Solution to the entire system = \(x(t, \theta) \) (all states)
- Solution for the part of the system that is observed is denoted \(f(t, \theta) \), defined as
 \[
 f(t, \theta) = \mathcal{O}x(t, \theta)
 \]
 for “observation matrix” \(\mathcal{O} \) with \(\# \) columns = \(\# \) states
- E.g., for the PK example (2 states) \(\mathcal{O} = (1, 0)^T \) \((1 \times 2)\) (and divide by \(V \))
Theophylline study: PK in **humans** following oral dose

- 12 “**healthy volunteers**” each given dose D (mg/kg) at time $t = 0$
- Blood samples drawn at 10 subsequent time points over the next 25 hours for each subject
- Samples **assayed** for theophylline concentration
- **Observe** y_1, \ldots, y_{10} at times t_1, \ldots, t_{10} on each subject

Objectives:

- For a **specific subject**, learn about absorption, distribution, and elimination by determining k_a, k_e, $V \Rightarrow$ dosing recommendations for this subject – we tackle this first
- Learn about how absorption, distribution, and elimination differ from subject to subject \Rightarrow dosing recommendations for the **population** of likely subjects – later in the course
Models and data

Model-based expression for theophylline concentration $C(t)$ at time t for a single subject:

$$f(t, \theta) = \frac{k_a F D}{V (k_a - k_e)} \{e^{-k_e t} - e^{-k_a t}\}, \quad \theta = (k_a, k_e, V)^T$$

- We take $F \equiv 1$
- Note that $f(t, \theta)$ also depends on the dose D; we suppress this dependence in the notation for now
Data for subject 12: Plot of concentration vs. time

Subject 12

Time (hr)

Theophylline Conc. (mg/L)
Data for subject 12: With “fitted model” superimposed
Remarks:

- Observed concentrations appear to trace out a pattern over time quite similar to that dictated by the one compartment model
- But they do not lie *exactly* on a smooth trajectory
- "Observation error"

Why?

- One obvious reason: Assay is not perfect, cannot measure concentration *exactly* (measurement error)
- Other reasons?
Approximation: Model is an *idealized* representation of a more complicated biological process.
Models and data

Standard conceptualization: Think of what we *observe* as

\[y_j = f(t_j, \theta) + \epsilon_j \]

- \(f(t, \theta) = C(t) \), a function of \(\theta = (k_a, k_e, V)^T \)

- \(\epsilon_j \) is the *deviation* between what the (deterministic) model dictates we would see at \(t_j \) and what we actually observe

- Here, \(\epsilon_j \) represents deviations from \(f(t_j, \theta) \) due to *measurement error*, "*biological fluctuations*"

\[\epsilon_j = \epsilon_{1j} + \epsilon_{2j} \]

Overall deviation \quad Measurement Error \quad “Fluctuation”
Thought experiment: Consider measurement error

- A particular blood sample has a “true” concentration of theophylline
- When we measure this concentration, an error is committed, which causes “observed” to deviate from “true” by an amount that is negative or positive
- Suppose we were to measure the same sample over and over (zillions of times) – each time, a possibly different error is committed
- So all such observations would turn out differently, even though, ideally, they should be all the same (measuring the same thing)
Results: Measurement error is a "source of variation" that leads to uncertainty in what we observe.

- In actuality, we measure the concentration only once.
- The error that results may be thought of as drawn from a "population" of all possible errors that could be committed when measuring concentration.
- \Rightarrow UNCERTAINTY – the observation could have turned out differently.
- Errors, and hence, observations, are variable.
Models and data

Recall: Would like to determine θ from the pairs $(y_j, t_j), j = 1, \ldots, n$

- Any determination of θ we try to make from these observations will be subject to uncertainty

- That is, if we estimate θ from data subject to measurement error (and other sources of variation), the estimate could have turned out differently

We will see:

- Failure to acknowledge this can lead to erroneous conclusions

- Acknowledging this requires a formal way to describe and assess uncertainty, and thus limitations of what can be learned from data
Models and data

Deterministic models: Representation of the “ideal relationship” between model states and time

Statistical models: Representation of the “actual relationship” between observations on model states and time

- Incorporate sources of *uncertainty* (variation)
- Framework for *formalizing* assumptions about the effects of variation
- Main tool: *probability*

Statistical model for observed theophylline concentrations:

$$Y_j = f(t_j, \theta) + \epsilon_j, \quad j = 1, \ldots, n$$

- Think of ϵ_j as a *random variable* with a *probability distribution* that characterizes “populations” of possible values of phenomena like measurement errors, fluctuations that might occur at t_j
Models and data

Statistical model for observed theophylline concentrations:

\[Y_j = f(t_j, \theta) + \epsilon_j, \quad j = 1, \ldots, n \]

• If \(\epsilon_j \) is a random variable, then so is what we observe

• \(\Rightarrow Y_j \) is a random variable with a *probability distribution* that characterizes how observations at \(t_j \) on this subject may vary because of measurement error, fluctuations, etc.

• The model describes pairs \((Y_j, t_j), \ j = 1, \ldots, n \), we might see; i.e., the model describes the *mechanism* by which data are thought to arise

• *Data* we observe are realizations of \(Y_j, \ j = 1, \ldots, n: \ y_1, \ldots, y_n \)

• The *mechanism* is characterized by assumptions on the *probability distribution* of \(\epsilon_j \) (so, equivalently, on that of \(Y_j \))
In general: Random variables and probability distributions are the building blocks of statistical models

- A statistical model is a representation of the mechanism by which data are assumed to arise.

- Phenomena that are subject to variation and hence give rise to uncertainty in the way data may “turn out” are represented by random variables.

- Assumptions on the nature of probability distributions for random variables in statistical models represent assumptions on the nature and extent of such variation.

- Mathematical models that describe the “idealized” relationship need to be embedded in such a model in an appropriate way and given an appropriate interpretation.

- Continue with the theophylline example for a demonstration...
Recap: Theophylline PK on a single subject

\[Y_j = f(t_j, \theta) + \epsilon_j, \quad j = 1, \ldots, n \]

\[f(t, \theta) = \frac{k_a F D}{V(k_a - k_e)} \{ e^{-k_e t} - e^{-k_a t} \}, \quad \theta = (k_a, k_e, V)^T \]

- \(f(t, \theta) \) derived from the deterministic compartment model; also depends on other stuff (dose \(D \) at \(t = 0 \))
- \(\epsilon_j \) represents deviation that causes observations to not fall exactly on the smooth path \(f(t, \theta) \)
- Aggregate effects of measurement error, "biological fluctuations," other phenomena
- \(\Rightarrow \epsilon_j \) is a random variable whose probability distribution reflects assumed features of these phenomena
- And \(Y_j \) is also a random variable (transformation of \(\epsilon_j \))
Conceptual representation:
Statistical models and sources of variation

More formal: In principle, the PK process could be observed at any time

- \(Y(t) \) is observed concentration that would be seen at time \(t \) and \(\epsilon(t) \) is the corresponding deviation under conditions \(U \) (\(U = \text{dose } D \) at \(t = 0 \))

\[
Y(t) = f(t, U, \theta) + \epsilon(t), \quad t \geq 0
\]

- Could have \(U = U(t) \) (e.g., HIV example); suppress for now

- Represents the assumed data generating mechanism at any time \(t \)

- \(Y(t), \epsilon(t) \) are stochastic processes – random function of time with sample space of possible values (functions); e.g., \(y(t), t \geq 0 \) (sample paths)

- For a fixed set of times \(t_1 < \cdots < t_n \) write

\[
Y(t_j) = f(t_j, U, \theta) + \epsilon(t_j)
\]

to represent observations that would be seen at these times under conditions \(U \)

- \(Y_j = Y(t_j), \epsilon_j = \epsilon(t_j) \)
Statistical models and sources of variation

\[Y(t_j) = f(t_j, U, \theta) + \epsilon(t_j) \]

Thus:

- \(\{\epsilon(t_1), \epsilon(t_2), \ldots, \epsilon(t_n)\}^T = (\epsilon_1, \epsilon_2, \ldots, \epsilon_n)^T \) and
 \(\{Y(t_1), Y(t_2), \ldots, Y(t_n)\}^T = (Y_1, Y_2, \ldots, Y_n)^T \)
 are random vectors

- Can consider the joint probability distribution of \((\epsilon_1, \epsilon_2, \ldots, \epsilon_n)^T\)
 [and thus of \((Y_1, Y_2, \ldots, Y_n)^T\)]

- **Technical point 1**: Probability distribution for a stochastic process
 arises from thinking of all possible such vectors and their joint
distributions for all \(n\) (infinitely many)

- **Technical point 2**: Probability distributions here depend on
 conditions \(U\) and are hence conditional probability distributions
 (conditional on \(U\))
Statistical models and sources of variation

\[Y(t_j) = f(t_j, U, \theta) + \epsilon(t_j) \]

Nature of \(\epsilon(t) \): "Biological fluctuations," measurement error

\[\epsilon(t) = \epsilon_1(t) + \epsilon_2(t) \]

- \(\epsilon_1(t_j) = \epsilon_{1j} \) represents *measurement error* that could be committed at fixed time \(t_j \)
- \(\epsilon_2(t_j) = \epsilon_{2j} \) represents "*fluctuation*" that might occur at \(t_j \)
- These random variables are *continuous* – concentrations *in principle* can take on *any value* (although we may be limited in what we may actually observe due to limits on resolution of measurement)
- Write \(\{\epsilon_1(t_1), \ldots, \epsilon_1(t_n)\}^T = (\epsilon_{11}, \ldots, \epsilon_{1n})^T \) and \(\{\epsilon_2(t_1), \ldots, \epsilon_2(t_n)\}^T = (\epsilon_{21}, \ldots, \epsilon_{2n})^T \) – random vectors
Statistical models and sources of variation

Measurement error: “Reasonable” assumptions on $\epsilon_1(t)$ and hence on aspects of the *joint probability distribution* of $(\epsilon_{11}, \ldots, \epsilon_{1n})^T$ (conditional on U)

- Measuring device is *unbiased* – does not systematically err in one direction

 $$E\{\epsilon_1(t)|U\} = 0 \ \forall t \ \Rightarrow \ E(\epsilon_{1j}|U) = 0 \ \text{for each } j = 1 \ldots, n$$

 (All possible errors for measuring concentration for the sample taken at any t_j “average out” to zero)

- In fact, negative or positive errors are *equally likely* \Rightarrow the *marginal conditional probability density* of ϵ_{1j} is *symmetric* for each j

- Measurement errors at any two times are “*unrelated*”

 $$\epsilon_1(t) \perp \perp \epsilon_1(s)|U \ \forall t, s \ \Rightarrow \ \epsilon_{1j} \perp \perp \epsilon_{1j'}|U \ \Rightarrow \ \text{cov}(\epsilon_{1j}, \epsilon_{1j'}|U) = 0$$
Statistical models and sources of variation

Measurement error: “Reasonable” assumptions on $\epsilon_1(t)$ and hence on aspects of the joint probability distribution of $(\epsilon_{11}, \ldots, \epsilon_{1n})^T$ (conditional on U)

- Variation among all errors that might occur at any time is of the same magnitude

\[
\text{var}\{\epsilon_1(t)|U\} = \sigma_1^2 \quad \forall t \quad \Rightarrow \quad \text{var}(\epsilon_{1j}|U) = \sigma_1^2
\]

for all j (unaffected by time or “actual concentration” in the sample at t_j) – is this realistic?

- In many cases, NO – measurement error variance tends to increase with increasing magnitude of the true concentration being measured – approximate by

\[
\text{var}\{\epsilon_1(t)|U\} \quad \text{is a function of} \quad f(t, U, \theta)
\]
Statistical models and sources of variation

“Biological fluctuations”: “Reasonable” assumptions on aspects of the joint probability distribution of $(\epsilon_{21}, \ldots, \epsilon_{2n})^T$ (conditional on U)

- Fluctuations tend to “track” the smooth trajectory $f(t, U, \theta)$ over time (sample path) but can be “above” or “below” at any time

$$E\{\epsilon_2(t)|U\} = 0 \ \forall t \ \Rightarrow \ E(\epsilon_{2j}|U) = 0$$

(All possible fluctuations at any time “average out” to zero)

- In fact, negative or positive fluctuations at a particular time are equally likely ⇒ the marginal conditional probability density of ϵ_{2j} is symmetric for each j

- Variation among fluctuations that might occur at any time is same at all times

$$\text{var}\{\epsilon_2(t)|U\} = \sigma_2^2 \ \forall t \ \Rightarrow \ \text{var}(\epsilon_{2j}|U) = \sigma_2^2 \ \forall j$$
Statistical models and sources of variation

“Biological fluctuations”: “Reasonable” assumptions on aspects of the joint probability distribution of \((\epsilon_{21}, \ldots, \epsilon_{2n})^T\) (conditional on \(U\))

- Fluctuations “close together” in time tend to behave “similarly,” with extent of “similarity” decreasing as the times grow more apart

\[
\text{cov}\{\epsilon_2(t), \epsilon_2(s)|U\} = C(|t-s|) \quad \text{and} \quad \text{corr}\{\epsilon_2(t), \epsilon_2(s)|U\} = c|t-s| \quad \forall t, s
\]

for decreasing functions \(C(\cdot), c(\cdot)\) with \(C(0) = \sigma_2^2\) and \(c(0) = 1\)

- Hence at times \(t_j, t_{j'}\)

\[
\text{cov}(\epsilon_{2j}, \epsilon_{2j'}|U) = C(|t_j - t_{j'}|) \quad \text{and} \quad \text{corr}(\epsilon_{2j}, \epsilon_{2j'}|U) = c(|t_j - t_{j'}|).
\]
“Biological fluctuations,” continued:

- E.g., for $\text{corr}(\epsilon_{2j}, \epsilon_{2j'}) = c(|t_j - t_{j'}|)$,

\[c(u) = \exp(-\phi u^2) \]

(so correlation between fluctuations at two times is nonnegative, reflecting “similarity”)

- Extent and direction of measurement error at any time t is unrelated to fluctuations at t or any other time

\[\epsilon_1(t) \perp \epsilon_2(s) | U \quad \forall t, s \Rightarrow \epsilon_{1j} \perp \epsilon_{2j'} \]

for any $t_j, t_{j'}, j, j' = 1, \ldots, n$
Remarks:

• The foregoing assumptions are not the only assumptions one could make, but exemplify the considerations involved.

• The normal probability distribution is a natural choice to represent the assumption of symmetry.
Recapping the assumptions: \(\epsilon_j = \epsilon_{1j} + \epsilon_{2j} \)

- \(E(\epsilon_{1j}|U) = 0, E(\epsilon_{2j}|U) = 0 \Rightarrow E(\epsilon_j|U) = 0 \)
- \(\text{var}(\epsilon_{1j}|U) = \sigma_1^2, \text{var}(\epsilon_{2j}|U) = \sigma_2^2, \) and \(\epsilon_{1j} \perp \perp \epsilon_{2j}|U \) for all \(j \)

\[
\Rightarrow \text{var}(\epsilon_j|U) = \sigma_1^2 + \sigma_2^2
\]

- \(\text{cov}(\epsilon_{1j}, \epsilon_{1j'}|U) = 0, \text{cov}(\epsilon_{2j}, \epsilon_{2j'}|U) = \sigma_2^2 c(|t_j - t_j'|) = \sigma_2^2 e^{-\phi(t_j-t_j')^2} \)

- Conditional on \(U, (\epsilon_{11}, \ldots, \epsilon_{1n})^T \) has mean vector 0 and covariance matrix

\[
\begin{pmatrix}
\sigma_1^2 & 0 & \cdots & 0 \\
0 & \sigma_1^2 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 \\
0 & \cdots & 0 & \sigma_1^2
\end{pmatrix}
= \sigma_1^2 I_n
\]

and has a multivariate normal distribution
Statistical models and sources of variation

Recapping the assumptions: \(\epsilon_j = \epsilon_{1j} + \epsilon_{2j} \)

- Conditional on \(U \), \((\epsilon_{21}, \ldots, \epsilon_{2n})^T\) has mean vector 0 and covariance matrix

\[
\sigma_2^2 \begin{pmatrix}
1 & e^{-\phi(t_1-t_2)^2} & \ldots & e^{-\phi(t_1-t_n)^2} \\
 e^{-\phi(t_1-t_2)^2} & 1 & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 e^{-\phi(t_1-t_n)^2} & \ldots & e^{-\phi(t_{n-1}-t_n)^2} & 1
\end{pmatrix} = \sigma_2^2 \Gamma
\]

and has a multivariate normal distribution

- So, conditional on \(U \),

\((\epsilon_1, \ldots, \epsilon_n)^T = (\epsilon_{11}, \ldots, \epsilon_{1n})^T + (\epsilon_{21}, \ldots, \epsilon_{2n})^T \) has mean vector 0 and covariance matrix

\[
\sigma_1^2 I_n + \sigma_2^2 \Gamma
\]
Statistical models and sources of variation

Thus: Implications for \(Y = (Y_1, \ldots, Y_n)^T \)

- \(E(Y_j|U) = f(t_j, U, \theta) + E(\epsilon_j|U) = f(t_j, U, \theta) \)
- Thus, may think of \(f(t, U, \theta) \) as the result of averaging across all possible sample paths of the fluctuation process and measurement errors, so representing the “inherent trajectory” for subject 12
- \(\text{var}(Y_j|U) = \text{var}(\epsilon_j|U) = \sigma_1^2 + \sigma_2^2 \)
- \(\text{cov}(Y_j, Y_{j'}|U) = \text{cov}(\epsilon_j, \epsilon_{j'}|U) = \sigma_2^2 \exp\{-\phi(t_j - t_{j'})^2\} \)
- \(Y_j \) is normally distributed (conditional on \(U \))
- The random vector \(Y = (Y_1, \ldots, Y_n)^T \) has a (conditional on \(U \)) multivariate normal distribution with mean vector and covariance matrix

\[
\begin{align*}
 f(U, \theta) &= \{f(t_1, U, \theta), \ldots, f(t_n, U, \theta)\}^T \\
 \text{and} \quad \sigma_1^2 I_n + \sigma_2^2 \Gamma
\end{align*}
\]
More succinctly: We have the statistical model
\[Y|U \sim \mathcal{N}_n\{f(U, \theta), \sigma_1^2 I_n + \sigma_2^2 \Gamma\} \] (3)

- Each *marginal* is a normal density, e.g.
\[Y_j|U \sim \mathcal{N}\{f(t_j, U, \theta), \sigma_1^2 + \sigma_2^2\} \]

Simplifications: We may be willing to make *simplifying assumptions*

- If the \(t_j\) are *far apart*, \(|t_j - t_j'|\) may be *large*, and hence
\[\exp\{-\phi(t_j - t_j')^2\} \text{ close to zero} \Rightarrow \text{“correlation among fluctuations at } t_1, \ldots, t_n \text{ is negligible”} \]

- **Approximate** by assuming \(\epsilon_{2j} \perp \perp \epsilon_{2j'}|U \Rightarrow \text{cov}(\epsilon_{2j}, \epsilon_{2j'}|U) = 0\) and thus \(\Gamma = I_n\), which implies
\[Y_j \perp Y_{j'}|U \Rightarrow \text{cov}(Y_j, Y_{j'}|U) = 0, \]
and \(\text{var}(Y_j|U) = \sigma^2 = \sigma_1^2 + \sigma_2^2\)
Statistical models and sources of variation

Summarizing: The *statistical model* becomes

\[Y|U \sim \mathcal{N}_n\{f(U, \theta), \sigma^2 I_n\}, \quad \psi = (\theta^T, \sigma^2)^T \]

(4)

- The *statistical model* (4) is the standard one that is typically assumed
- The foregoing development shows the considerations involved in *justifying* this model
- These considerations are almost *never* mentioned in the literature on *inverse problems*; indeed, no reference to a statistical model is typically even made
- **Important**: Just because we assume this statistical model holds doesn’t mean we’re *correct*
- We might proceed as if the model is correct, but need to worry about the implications if it is *not*; more later
So far: For simplicity, we have restricted attention to the situation where Y_j are *scalars*

- Y_j is theophylline concentration at time t_j

- The data observed at each t_j may be *multivariate*; i.e., Y_j is a *random vector*

- In the *HIV example*, the data observed are *bivariate*; i.e.

 $$Y_j = (Y_j^{(1)}, Y_j^{(2)})^T = (\text{CD4 count at } t_j, \text{viral load at } t_j)^T$$

- In terms of the *mathematical model* on slide 14, with the 7 states

 $$x(t) = \{T_1(t), T_2(t), T_1^*(t), T_2^*(t), V_I(t), V_{NI}(t), E(t)\}^T$$

 we have observations on

 $$T_1(t) + T_1^*(t) = \text{CD4 count} \quad \text{and} \quad V_I(t) + V_{NI}(t) = \text{viral load at } t_1, \ldots, t_n$$
Multivariate observations:

- As on slide 20, a model $f(t, U, \theta) \ (2 \times 1)$ can be derived from the solution $x(t, U, \theta)$ to the system $\dot{x} = g\{t, x(t), \theta\}$ as

$$f(t, U, \theta) = O x(t, U, \theta),$$

where O is the (2×7) observation matrix

$$O = \begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0
\end{pmatrix}$$

- Thus, we have the bivariate model

$$f(t, U, \theta) = \begin{pmatrix}
f^{(1)}(t, U, \theta) \\
f^{(2)}(t, U, \theta)
\end{pmatrix}.$$

- All data: $Y = (Y_1^T, \ldots, Y_n^T)^T \ (2n \times 1)$
Bivariate stochastic process:

\[Y(t) = \begin{pmatrix} Y^{(1)}(t) \\ Y^{(2)}(t) \end{pmatrix} = f(t, U, \theta) + \epsilon(t), \ t \geq 0 \]

\[\epsilon(t) = \epsilon_1(t) + \epsilon_2(t) = \begin{pmatrix} \epsilon^{(1)}_1(t) \\ \epsilon^{(2)}_1(t) \end{pmatrix} + \begin{pmatrix} \epsilon^{(1)}_2(t) \\ \epsilon^{(2)}_2(t) \end{pmatrix} \]

- Observations

\[Y_j = \{Y^{(1)}(t_j), Y^{(2)}(t_j)\}^T = (Y^{(1)}_j, Y^{(2)}_j)^T, \ j = 1, \ldots, n \]

- Measurement error deviations

\[\epsilon_{1j} = \{\epsilon^{(1)}_1(t_j), \epsilon^{(2)}_1(t_j)\}^T = (\epsilon^{(1)}_{1j}, \epsilon^{(2)}_{1j})^T \]

- “Fluctuation” deviations

\[\epsilon_{2j} = \{\epsilon^{(1)}_2(t_j), \epsilon^{(2)}_2(t_j)\}^T = (\epsilon^{(1)}_{2j}, \epsilon^{(2)}_{2j})^T \]
Statistical models and sources of variation

In fact: Observations on each component of $Y(t)$ need not even be at the *same times*; for simplicity, we assume that they are here.

Statistical model: Considerations for *each component* of $\epsilon(t)$ and hence $\epsilon_j = \epsilon_{1j} + \epsilon_{2j}$ and $Y_j = (Y_j^{(1)}, Y_j^{(2)})^T$ are as before.

- We might still assume $\epsilon_{1j} \perp \perp \epsilon_{2j}|U$ and believe

 $$E(\epsilon_{1j}|U) = 0, \quad E(\epsilon_{2j}|U) = 0 \quad \Rightarrow \quad E(\epsilon_j|U) = 0$$

 based on the same rationale as before, applied to each component *separately*.

- We now have to consider our beliefs about *variance and correlation* for *each component* in

 $$\epsilon_j = \epsilon_{1j} + \epsilon_{2j} = (\epsilon_{1j}^{(1)}, \epsilon_{1j}^{(2)})^T + (\epsilon_{2j}^{(1)}, \epsilon_{2j}^{(2)})^T$$

 AND correlations between $\epsilon_{kj}^{(1)}$ and $\epsilon_{kj'}^{(2)}$ for $k = 1, 2$ at times j, j'.
Statistical models and sources of variation

Statistical model, continued: For example, variances

- Measurement error variances
 \[
 \text{var}(\epsilon_{1j}^{(1)} | U) = \sigma_{1}^{(1)2}, \quad \text{var}(\epsilon_{1j}^{(2)} | U) = \sigma_{1}^{(2)2}
 \]

- “Fluctuation” variances
 \[
 \text{var}(\epsilon_{2j}^{(1)} | U) = \sigma_{2}^{(1)2}, \quad \text{var}(\epsilon_{2j}^{(2)} | U) = \sigma_{2}^{(2)2}
 \]

- Thus under the foregoing independence assumption
 \[
 \text{var}(\epsilon_{j}^{(1)} | U) = \sigma_{1}^{(1)2} + \sigma_{2}^{(1)2}, \quad \text{var}(\epsilon_{j}^{(2)} | U) = \sigma_{1}^{(2)2} + \sigma_{2}^{(2)2}
 \]
Statistical models and sources of variation

Statistical model, continued: For example, covariances

- Between “fluctuations” for each $k = 1, 2$

 \[
 \text{cov}(\epsilon_{2j}^{(k)}, \epsilon_{2j'}^{(k)} | U) = \sigma_2^{(k)} c^{(k)}(|t_j - t_{j'}|) = \sigma_2^{(k)} e^{-\phi_k (t_j - t_{j'})^2}
 \]

 (separate correlation functions depending on ϕ_k for each $k = 1, 2$)

- Between measurement errors in the same or different components at different times

 \[
 \text{cov}(\epsilon_{1j}^{(k)}, \epsilon_{1j'}^{(k')} | U) = 0, \quad j \neq j', \quad k, k' = 1, 2
 \]

- Between measurement errors in different components at the same time

 \[
 \text{cov}(\epsilon_{1j}^{(1)}, \epsilon_{1j}^{(2)} | U) = 0
 \]

 Is this reasonable?
Statistical models and sources of variation

Statistical model, continued: For example, *covariances*

- Between "fluctuations" in "true" CD4 counts and viral loads

\[
\text{cov}(\epsilon_{2j}^{(1)}, \epsilon_{2j'}^{(2)}|U) = ???
\]

Do we believe that the fluctuations in "true" CD4 counts and viral loads are *independent*?
Statistical models and sources of variation

Distributional assumption: As before

- Could assume \(Y_j\mid U \) has a *multivariate normal* distribution with whatever *covariance structure* is implied by the assumptions made
- I.e., the *marginal density* for each \(Y_j \) is *bivariate normal*

\[
Y_j\mid U \sim \mathcal{N}_2\{f(t, U, \theta), \Psi\},
\]

where \(\Psi \) is a \((2 \times 2)\) covariance matrix

- \(\psi = (\theta^T, \xi^T)^T \), where \(\xi \) is the set of all *covariance parameters* in \(\Psi \)
- Implied distributional model for *all data* \(Y \)
Statistical models and sources of variation

Summarizing: *Lots* to think about and *make assumptions about* here...

Common practice in inverse problems: Amounts to assuming a statistical model with *all possible correlations negligible*

- E.g., t_j are far apart, each component operates *independently* of the other, etc.

- Implies $Y_j \perp \perp Y_{j'} | U$, $Y_j^{(1)} \perp \perp Y_j^{(2)} | U$ for all j, j', and thus

\[
\text{var}(Y_j | U) = \mathcal{V} = \begin{pmatrix} \sigma^{(1)2} & 0 \\ 0 & \sigma^{(2)2} \end{pmatrix},
\]

\[
\text{var}(Y_j^{(1)} | U) = \sigma^{(1)2} = \sigma_1^{(1)2} + \sigma_2^{(1)2}, \quad \text{var}(Y_j^{(2)} | U) = \sigma^{(2)2} = \sigma_1^{(2)2} + \sigma_2^{(2)2}
\]

- *Is this reasonable?*
Implied statistical model: The statistical model tacitly assumed in inverse problems is

\[Y_j | U \sim \mathcal{N}_2 \{ f(t, U, \theta), \mathcal{V} \}, \quad j = 1, \ldots, n \tag{5} \]

\[\mathcal{V} = \begin{pmatrix} \sigma^{(1)^2} & 0 \\ 0 & \sigma^{(2)^2} \end{pmatrix}. \]

- **In fact**, sometimes, the even more restrictive assumption that \(\sigma^{(1)^2} = \sigma^{(2)^2} = \sigma^2 \) is imposed, so that \(\mathcal{V} = \sigma^2 I_2 \! .!

- Does this make any sense? At the very least, it implies that errors in measurement are of similar magnitude for all components of \(Y_j \), regardless of different scales of measurement...

Clearly: All of this of course generalizes to observation vectors with \(\geq 2 \) components in the obvious way (even more complicated)
Key point: A statistical model like (3), (4), or (5) thus describes all possible probability distributions for random vector Y representing the data generating mechanism for observations we might see at t_1, \ldots, t_n under conditions U

- E.g., for (3), possible probability distributions are specified by different values of the parameter $\psi = (\theta^T, \sigma_1^2, \sigma_2^2, \phi)^T \in \Psi$
- The big question: Which value of ψ truly governs the mechanism?
- We are interested in θ (the other components of ψ are required to describe the model fully, but are a nuisance . . . more later)

Objective: If we collect data (so observe a single realization of Y) under conditions U, what can we learn about ψ?

- . . . and how can we account for the fact that things could have turned out differently (i.e., a different realization)?