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Abstract

This paper addresses aspects of model development and control design for smart structure which
utilize piezoelectric, electrostrictive, magnetostrictive or shape memory alloys. The advent of these
materials as sensors and actuators provides the opportunity for designing systems with improved per-
formance while reducing weight, hardware and power requirements. At high drive levels, however, all
of these materials exhibit nonlinear constitutive relations and varying degrees of hysteresis which must
be accommodated to realize their full potential in smart structures. We outline a variety of modeling
techniques and illustrate their use in feedback, feedforward and adaptive control designs.



1 Introduction

Increased demands for high performance control design in combination with recent advances in material
science have produced a class of systems termed smart, intelligent or adaptive structures. While subtle
differences may be associated with the individual terms, these structures are generally defined as systems
whose dynamics can be monitored or modified by distributed sensors and actuators, in accordance with
an integrated control law, to accommodate time-varying exogenous inputs or changing environmental
conditions. Specific choices for the actuators, sensors and control laws are dictated by the design
requirements for the system.

For aeronautic and aerospace systems, control transducers must be light- weight and should typically
have minimal effect on the passive system dynamics. Furthermore, actuators must provide the required
strain or force inputs using the available power supplies which, in certain aerospace structures, may
require the scavenging of power from other components in the system. Restrictions on size and weight
also dictate that transducers in some regimes must be capable of multiple roles. For example, the
transducers which monitor and control vibrations in an aircraft fuselage may also be required to act as
inputs and sensors for health monitoring or nondestructive evaluation of the structure. The limitations
on the mass and size of transducers are often relaxed in industrial applications but output requirements
may be more stringent. For example, the actuators employed for controlling vibrations in the cutting
head of a milling machine are required to generate massive forces throughout a wide frequency range.

Actuators and sensors comprised of smart or active materials can meet these criteria. Like the
definition for smart structures, the definitions of smart or active materials can vary somewhat between
fields. We define active actuator materials as those which can convert electrical, magnetic or thermal
energy to mechanical energy while sensor effects are provided by the opposite conversion of energy. In
this discussion, we focus on piezoelectric, electrostrictive, magnetostrictive materials and shape memory
alloys. The first three compounds can be used for both sensing and actuating while shape memory alloys
are used only in the latter capacity.

Piezoelectric compounds have been the most widely used transducer for smart structure design due
to the fact that they are lightweight and compact, relatively inexpensive, and exhibit fairly linear field-
strain relations at low drive levels. Due to the inherent direct and converse piezoelectric effects, they can
also be employed as both sensors and actuators. At higher drive levels, however, they exhibit hysteresis
which must be accommodated in applications that require micropositioning or precise control design.

In certain applications, electrostrictive elements constructed from relaxor ferroelectric materials are
advantageous over piezoceramic patches due to the fact that they exhibit minimal hysteresis when
employed in the diffuse transition region near the material’s bulk Curie temperature. This makes
them advantageous in systems including sonar transducers and deformable mirrors. Unlike piezoelectric
materials, electrostrictive compounds are not poled and hence exhibit few aging effects. As detailed
in Section 2, however, the constitutive behavior of the materials is highly temperature-dependent and
nonlinear near saturation. Both aspects must be accommodated when designing control systems which
utilize the compounds.

The magnetic analogue of the electrostrictive compounds are magnetostrictive materials which con-
vert magnetic energy to mechanical energy and vice-versa. Due to the circuits required to generate
the driving magnetic fields, transducers which utilize magnetostrictive cores are currently larger and
more massive than piezoelectric or electrostrictive patches. The giant forces and strains generated
by the transducers, however, make them advantageous in certain industrial systems, and as material
properties and transducer designs are refined, the scope of their application should rapidly increase.
From a modeling and control perspective, the nonlinearities and hysteresis inherent to the materials at
moderate to high drive levels must be accommodated before the materials can be utilized to their full
potential.



Shape memory alloys produce strains on the order of 10% in response to thermal inputs. This makes
them candidates as actuators in applications, such as changing the camber of a helicopter blade, which
require large strains or displacements. The modeling of these materials is difficult, however, due to
both the large strains involved and the inherently nonlinear constitutive behavior of the materials. As
detailed in Section 4, this has promoted the development of both energy-based and phenomenological
models which can be inverted for linear control design.

The design of smart structures which utilize these materials requires both the characterization of
their constitutive properties and the development of coupled models which quantify their interaction
with underlying systems. Control laws must be compatible with the properties of the sensors and
actuators as well as the mechanisms through which they interact with the system. For example, the
previously mentioned actuators yield unbounded (discontinuous) input operators in the mathematical
formulation of the control problem. The extension of control theories to this regime has been been
completed in certain applications but is lacking in general. Moreover, all of the active materials exhibit
nonlinear dynamics and hysteresis at high drive levels. This must be incorporated in both the models
and control methods before the materials can be utilized to their full capability in smart structure design.
While aspects of the nonlinear design have been addressed, the state of the theory lags far behind that
for the linear case.

Because the dynamics of a smart structure are dependent upon the attributes of the constituent
active materials, it is necessary to consider the development of linear, nonlinear and hysteretic con-
stitutive relations, their incorporation in coupled system models, and subsequent control design in a
concerted manner. This facilitates the development of models amenable to control design, and the
formulation of control laws which are compatible with the physical attributes of the active sensor and
actuator materials. Subsequent discussion of the active materials and their utilization in smart struc-
tures follows this philosophy. For each compound, aspects of the material behavior which are pertinent
to model development are discussed and appropriate constitutive relations are presented. Finally, a
variety of control techniques compatible with the linear and nonlinear models are outlined. While this
provides a synopsis of only certain facets of model development and control design for smart structures,
it illustrates issues which must be addressed in order to utilize the full potential of these systems.

2 Piezoelectric and Electrostrictive Materials

Smart structure technology utilizing piezoelectric and electrostrictive materials has evolved from solely
passive devices for reducing structural vibrations to highly integrated systems which provide the ca-
pability for both sensing and actuating, adaptively modifying system dynamics and monitoring the
health of the system. To illustrate facets of this technology and the control issues which it has raised,
we first outline some prototypical applications employing piezoelectric and electrostrictive transducers.
A crucial aspect of control design is the development of appropriate models and this forms the focus
of much of this section. Representative examples of current control designs and directions for future
research are then summarized in Section 2.5.

2.1 Piezoelectric and Electrostrictive Applications

2.1.1 Structural Applications

Many of the initial applications utilizing both the sensing and actuating capabilities of piezoelectric ma-
terials focussed on vibration attenuation or the reduction of structure-borne noise in structural acoustic
systems. To illustrate the first application, consider the thin beam with surface-mounted piezoceramic
patches depicted in Figure 1. Through the application of diametrically out-of-phase voltages to the
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Figure 1: (a) Thin beam with surface-mounted piezoceramic patches. (b) Bending moments generated
by out-of-phase voltages to the patches.

patches, bending moments are created in the beam which produce transverse displacements. This pro-
vides the actuator capabilities for the configuration. The sensor capabilities are provided by the direct
piezoelectric effect in which stresses in the patch produce charges and corresponding voltages. A truly
integrated smart structure utilizes either self-sensing actuators [27] or sensor-actuator pairs to provide
the observations and inputs required for vibration attenuation.

While all piezoelectric materials exhibit a certain degree of hysteresis, it is minimal at low drive levels
and can in certain applications be reduced by charge or current control [58]. Moreover, the feedback
mechanisms employed in many control applications can further reduce the hysteresis exhibited by the
materials. Hence the majority of structural control applications utilizing piezoceramic transducers have
relied on linear models and linear control methods. The assumption of linearity in piezoelectric materials
fails, however, at high drive levels or high accuracy applications such as micropositioning [34, 35]. In
such regimes, hysteresis must be accommodated in both the models and control designs. In Section 2.3
we outline two hysteresis models which are amenable to inversion and hence facilitate the construction
of an inverse compensator for linear control design.

Relaxor ferroelectric materials such as the electrostrictive PMN-PT-BT provide the capability for
generating large strains with minimal hysteresis if employed in the diffuse transition region. As detailed
in Section 2.2, however, the relation between input fields and generated strains is nonlinear at both low
drive levels and near saturation. While this must be accommodated in control design, it also provides
the possibility for designing adaptive structures in which coupling constants and sensitivities can be
tuned by prescribing a bias field commensurate with a specific region of the nonlinear curve [63].

The dual sensor and actuator capabilities of piezoelectric and electrostrictive materials also provide
the possibility for health monitoring in smart structures. As detailed in [9], this can be accomplished by
driving the structure using the actuator facility of the material and sensing its response using the direct
piezoelectric or electrostrictive effects. The status of the structure can then be evaluated using various
criteria. The simplest strategy is to compare the response to baseline data for the original structure.
If significant deviations are detected, more detailed analysis can be performed. If sufficiently accurate
models are employed, this can include the identification of defects through least squares fits to the data.
Details regarding these procedures are provided in [9] and included references.

In addition to vibration control and health monitoring, piezoelectric and electrostrictive actuators are
increasingly employed to provide shape or structural modifications which enhance system performance.
A prototypical example from [49] is the flap assembly depicted in Figure 2. In this design, the strains
produced by stacked piezoelectric actuators are amplified by a rod and cusp assembly to provide the
stroke required to rotate flaps. This research is directed at modifying the aerodynamic properties of
aircraft wings or helicopter rotor blades.
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Figure 2: Piezoceramic stack used for flap rotation (after [49]).

2.1.2 Structural Acoustic Applications

A second class of smart structures in which piezoceramic actuators and sensors have played a funda-
mental role are those involved in structural acoustic systems. Structure-borne noise arises in settings
ranging from aircraft and automobiles to fields emanating from high voltage transformers. In all cases,
the unwanted noise is generated by structural vibrations produced by an adjacent source (e.g., aircraft
engines, impinging flowfields, vibrating machinery, electromagnetic cores). Smart materials provide the
capability for reducing structure-borne noise by modifying the structural dynamics to regimes which
couple less effectively with acoustic fields as depicted in Figure 3. This capability can be enhanced
through the use of models which predict sound power levels as a function of structural displacements
and velocities. In this case, piezoceramic patches can be utilized to sense the structural strains and
produce bending moments in accordance with a structural acoustic model-based control law [19].

The sound pressure levels encounted in originally considered aircraft, automotive and industrial
systems were typically linear, and linear PZT models were employed for characterization and control
design. As noted in Section 2.5, feedforward methods are currently employed for many structural
acoustic applications. Because these techniques rely on superposition principles, they are inherently
linear and hence require either linear models or linear filtering techniques such as inverse compensation.

Current and future structural acoustic applications are beginning to focus on regimes which are
highly nonlinear and will require the development of nonlinear models and control techniques. For
example, the sound pressure levels produced in a space launch vehicle payload fairing during liftoff or
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Figure 3: Thin shell with surface-mounted piezoceramic patches which encloses and acoustic cavity.



impinging on an aircraft bay at supersonic speeds can exceed 150 dB [29, 72, 91]. Smart materials
employed in these applications will quite likely be operating in highly nonlinear ranges which will
necessitate the use of nonlinear constitutive and hysteresis models of the type illustrated in Section 2.3.

2.1.3 High Performance Transducers

An area of research which has the potential for significantly affecting smart structure design is the
development of high performance transducers which employ piezoelectric or electrostrictive materials.
Because these transducers can exhibit nonlinear dynamics and hysteresis, their incorporation will also
necessitate the use of nonlinear models of the type outlined in Section 2.3 and control methods com-
mensurate with these models.

The number of new high performance transducers that have recently been developed is vast so we
restrict our attention to three types and refer the reader to [63] for general discussion concerning the
state of the art in this area.

The first are THUNDER actuators which are typically comprised of a piezoceramic wafer, a metallic
backing material, hot melt adhesive layers, and optional metallic top layers [39, 60]. The manufacturing
process produces a characteristic curved shape and provides the actuators with the robustness necessary
to withstand the high voltages required for large force and strain generation. Because the actuators
operate at extremely high drive levels, the relation between the input field and generated strains exhibits
significant hysteresis and nonlinear constitutive relations which must be accommodated in models and
subsequent control design.

A second class of composite transducers are flextensional designs which utilize PZT or PMN-PT-BT
drivers [21, 36]. Prototypical designs are depicted in Figure 4, and the reader is referred to Section 3.1
and [24] for discussion about analogous transducers which employ magnetostrictive drivers. This class
of transducers was originally developed for sonar projection but due to its wide range of hydrodynamic
response, it has recently been used for applications including oil exploration and underwater imaging.
For high drive levels and electrostrictive drivers, nonlinear models must be employed to characterize
the drive dynamics. A second area of modeling and optimal design involves the determination of
cap geometries which produce desired frequency responses for both sending and receiving hydrostatic
signals. Because the transducers have both tunable actuator and sensor attributes, they provide a
unique capability for certain adaptive smart structure applications.

The final class of actuators which we mention are the inch worm actuators which utilize piezoelectric,
electrostrictive or magnetostrictive materials as drive elements and clamps [24]. A hybrid design utilizing
piezoceramic and magnetostrictive components is illustrated in Figure 21 of Section 3.1. Such designs
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Figure 4: Flextensional piezoceramic and electrostrictive transducers. (a) Piezoceramic cymbal actuator
(after [21]) and (b) PMN- PT-BT transducer (after [36]).



provide the capability for essentially unlimited displacements with speeds currently on the order of
1 mm/sec. As the designs and drive electronics improve, the utilization of such devices in smart
structure applications should continue to increase.

2.2 Physical Properties of the Materials

To motivate the models currently employed for smart structures employing ferroelectric and relaxor
ferroelectric materials, it is necessary to understand certain characteristics of the material properties.
For example, the ionic biases produced during the poling of piezoelectric materials are the source of
bidirectional strains and quasilinear behavior at low drive levels whereas the hysteresis is a direct
consequence of the domain structure inherent to ferroelectric materials. In this section, we summarize
the material properties pertinent to subsequent model development and control design. We consider the
commonly employed piezoelectric material Pb(Zr,Ti)O3 and the electrostrictive material Pb(Mg,Nb)O3
which are respectively referred to as PZT and PMN. For brevity, we focus on the ferroelectric properties
of these materials and refer the reader to [37] for details concerning the physical behavior of relaxor
ferroelectrics when employed in the diffuse transition region.

2.2.1 Ferroelectric Domains

Currently employed PZT transducer materials are comprised of PbTi;_,0O3 and PbZr,;O3 compounds
with z chosen to optimize electromechanical coupling. To simplify this discussion, we focus solely on
PbTi;—;O3 and refer the reader to [63] for a general discussion of piezoelectric material properties.

As illustrated in Figure 5, the material distorts from a cubic to tetragonal form as it is cooled below
the Curie point. This is manifested in the biasing of the Ti*T ion toward an 0% pair to minimize the
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Figure 5: (a) Polar form of PbTiO3; (b) Potential energy as a function of Ti position along the z3
axis; (c) Change in polarization AP; = d3zos due to an applied transverse stress o3; (d) Change in
polarization AP; = d3;01 due to an axial stress o1 (after [63]).
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Figure 6: (a) Surface charge due to a spontaneous polarization. (b) twinned 180° domains which form
to minimize electrostatic energy.

potential energy and it produces a spontaneous polarization within the cell. As a direct consequence of
the formation of spontaneous polarization is the generation of a surface charge and depolarizing field
as depicted in Figure 6. The minization of electrostatic energy then produces a twinned 180° domain
structure where domains refer to regions where dipoles moments are highly aligned and domain walls
denote transition regions between domains. Furthermore, the generation of stresses in the material as it
cools produces 90° domains which minimize strains and the corresponding elastic energy. We note that
while polarization models must accommodate the switching of both 90° and 180° domains, the former
is of primary interest when quantifying the strains generated by the material.

The discussion thus far pertains to single crystals whereas the piezoelectric materials used in smart
structure applications are polychrystalline and, due to the random orientation of grains and domains,
have no net polarization. To produce the electrical anisotropy which provides piezoelectric compounds
with sensor and actuator capabilities, it is necessary to pole the material by applying an intense DC field
at elevated temperatures slightly below the Curie point. This partially aligns domains which produces
a net polarization in the material.

Two manifestations of the piezoelectric effect for poled ferroelectric materials are utilized in smart
structure applications. The direct effect involves the generation of a charge when stress is applied to
the material and provides the material with its sensor capabilities. The converse effect reflects the
strain generated by an applied field and is used for actuator applications. As illustrated in Figure 5, the
applications of a stress o3 parallel to the dipole produces an enhancement of the spontaneous polarization
whereas the application of a perpendicular stress o1 decreases the spontaneous polarization. Hence the
piezoelectric coupling coefficient dss is positive while ds; is negative.

2.2.2 Hysteresis

An important manifestation of the ferroelectric nature of piezoelectric and electrostrictive materials is
the inherent hysteresis observed at moderate to high input levels. A typical hysteresis relation between
the input field £ and polarization P for PZT5A is plotted in Figure 7. The nearly vertical burst region
of the curve is attributed to 180° domain nucleation and growth. Near saturation, the material acts as
a single domain and subsequent changes in polarization are due to the extension of dipoles through ion
displacement.

Sigmoidal hysteresis of the form depicted in Figure 7 is typically attributed to the restriction of
domain wall movement by inclusions or pinning sites inherent to the material. These sites can be
caused by impurities, second-phase materials, or stress nonhomogeneities which in many cases are not
only unavoidable but are necessary for the material’s performance. The pinning of domain walls at these
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Figure 7: Hysteresis observed in a PZT5A wafer in response to a 1600 V input.

locations results from the reduction in electrostatic energy which occurs at the inclusions. A complete
discussion of the mechanisms which underlie domain wall pinning and movement is beyond the scope of
this presentation and we refer the reader to [80] for details and references concerning these phenomena.

For subsequent model development, we simply note that the motion of domain walls pinned at
inclusions is comprised of two primary components: bending and translation. Bending occurs at low
input field levels before domain walls have attained sufficient energy to move out of local energy wells
[15, 30, 54]. This motion is reversible and accounts for a large percentage of the polarization change
in hard PZT materials. At higher field levels, the local energy barriers are overcome and domain walls
translate to a remote pinning site [15]. This provides an irreversible component to the polarization
which is present in both hard and soft materials but plays a more major role in soft materials where
lower energies are required to rotate domains. These reversible and irreversible components to the
magnetization will be quantified in Section 2.3 to provide a hysteresis model for ferroelectric materials.

2.3 Material Models

To characterize the relations between applied fields and the polarization which results in ferroelectric and
relaxor ferroelectric materials, we consider three classes of models. The linear models are applicable for
piezoelectric materials at low drive levels where hysteresis and saturation phenomena are minimal. The
second class of models includes higher order representations which are suitable for relaxor ferroelectric
operating in the diffuse transition region where hysteresis is minimal. Finally, we outline two methods
for quantifying the hysteresis observed in piezoelectric materials at high drive levels and electrostrictive
materials operating in the ferroelectric range. The first hysteresis model is based on electrostrictive
domain principles while the second is a Preisach approach which is phenomenological in nature. Both
techniques are amenable to inversion which facilitates linear control design through the construction of

an inverse compensator.

2.3.1 Linear Model

At low input field levels, piezoelectric materials exhibit bidirectional strains and nearly linear relations
between the field, voltage, or polarization and the resulting strain. Similarly, the electric fields generated
by the direct piezoelectric effect exhibit a nearly linear dependence upon the applied stress. The



development of linear models relating the dielectric and elastic behavior of piezoelectric materials is
attributed to Voigt, and the resulting coupled models are used for smart material characterization in
numerous applications which require low input fields or voltages.

As detailed in [61, 64], the assumption of linear dielectric and elastic behavior respectively yields
the relations

D; = dijko'jk + E%Ej
V (1)
€ij = SijkeTke + diij By
as models for the direct and converse piezoelectric effects. Note that the Einstein summation convention
is employed in both relations so that terms with repeated indices are summed. Here D and E denote
the usual electric fields, o and e respectively denote the applied stress and resulting strain, €7; denotes
components of the dielectric permittivity tensor measured at constant stress, and s is the elastic
compliance tensor measured at constant electric field. The first term on right side of the converse
relation is due to Hooke’s law while the second describes the strains which occur in a material which
is free to deform in the absence of stresses. Finally, we note that the relation D; = €;Ej in the direct
model should be used with caution for ferroelectric materials since the permittivity is not only nonlinear
but is a multi-valued map at high input levels.

The tensor formulations in (1) provide a complete description of the material behavior for general
piezoelectric compounds. The number of coefficients can be reduced significantly, however, by invoking
elastic symmetries and electric symmetries due to poling. When combined with a change of index, this
provides a matrix system suitable for typical smart material applications.

We first note that for linear elastic materials, the stress and strain tensors are symmetric so that
oij = 0ji and e;; = ej;. The symmetry in stress and strain implies that d;;; is symmetric in j and &
thus leaving 18 independent coeflicients.

To formulate the system as a matrix equation, the indices jk are replaced by a single index m
according to the following convention:

11 22 33 23,32 31,13 12,21 Tensor
1 2 3 4 5 6 Matrix

The coefficients d;;; are then written as d;j; = di, when m =1,2,3 and d;j = %dim when m = 4,5, 6.
The factor of 1/2 accommodates the symmetry in j and k. A similar convention is used to formulate
the stress, strain and compliance tensors as matrices (e.g., [23, 71]).

The number of coefficients d;,, and stress-strain elements of interest are further reduced when we
consider a material which is poled in the z3 direction. As noted in [23], conical symmetry dictates that
in this case, all of the piezoelectric coefficients are zero except d3; = dso,d33 and di5 = dog.

The utilization of the structural and electrical symmetries along with matrix re-indexing then yields
the system

[ e | [ s‘lgl 311E2 3‘1% 0 0 010 0 dsg | [ o1 ]
) sty s sl 0 0 0[]0 0 dy o2
es s% sfg,, 83E3 0 0 0 0 0 dss o3
€4 0 0 0 Sﬂ 0 0 0 d15 0 g4
€5 = 0 0 0 0 34E4 0 d15 0 0 g5
€6 0 0 0 0 0 sé% 0 0 g
D1 0 0 0 0 dis 0 |€; O 0 FEq
Do 0 0 0 dis 0 0 0 €, 0 Es

| D3 | | d31 d31 dzz O 0 0 0 0 €35 | [ B3 |




summarizing the converse and direct piezoelectric effects. In matrix form, the components can be
written as

D=do+¢€eF

2
e=sfo+dTE. @)

Finally, by utilizing the relation P; = €gx;;jE;, where x;; is the dielectric susceptibility tensor and
€o is the permittivity of a vacuum, one can also express the strain in terms of the polarization through
the relation

E
€ij = Sijke0ke + gejr€ip P - (3)

This formulation proves advantageous when modeling ferroelectric hysteresis in the relation between
the field and polarization.

2.3.2 Higher Order Anhysteretic Models

The linear models (1)-(3) are valid only for poled materials with small to moderate applied stresses
or fields. For general relaxor ferroelectrics and higher input levels, quadratic electrostrictive effects,
saturation phenomena and hysteresis are significant and must be incorporated in the models. We
summarize here higher order models for hysteresis-free (anhysteretic) behavior and address hysteresis
in the next section.

When formulated in terms of the polarization, the converse and direct effects in centrosymmetric
materials (e.g., electrostrictive materials) can be modeled by the relations

E; = —2QyujoneP; + F(P;,T) @

E
€ij = Sijreoke + QijkePrle -

Here @) is a fourth rank tensor of electrostrictive coefficients while F(P;,T') is a nonlinear function of
the polarization and temperature T which incorporates the low field quadratic behavior as well as the
saturation effects which occur at high drive levels.

To illustrate the derivation of appropriate functions F(P,T) and to provide the framework re-
quired for subsequent hysteresis models, we consider the modeling of hysteresis free (anhysteretic)
PMN through the application of Boltzmann statistics. As detailed in [79, 80], the potential energy for
a dipole moment p, in an electric field E is

E=—-py-E=—pyFEcosb
where pg = |po|, £ = |E|. The balancing of thermal and electrostatic energy then yields the probability
u(E) = Ceme/kaT

that a dipole occupies the energy state £. Here kp denotes Boltzmann’s constant and C' is a constant
which is specified in a manner which ensures that integration over all possible configurations yields the
total number of moments per unit volume. The assumption that the orientation of cells can be in any
direction yields the classical Langevin relation

P,, = P, [coth (%) - (E%)] (5)
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where P is the saturation polarization and
E.=FE+ aP +2Q33Po (6)

denotes the effective field acting at the domain level. For constant temperature, the parameters a and
a are given by o = /P, and a = ET/(3T,) where E denotes a scaling electric field and 7, is the Curie
temperature. A second model which results from the assumption that dipoles align only in the direction
of the field or opposite to it is the Ising spin relation

P,, = P;tanh (%> (7)
a

where a = ET/TC. The behavior of the two models is illustrated in Figure 8. We also refer the reader
to [67] for an alternative approach to modeling the anhysteretic polarization.

To obtain a constitutive relation commensurate with (4), the characterization must be polarization
based. The necessary inversion can be accomplished for the Ising spin model which yields

ET P
E = —2Q33Pc — aP + arctanh— . (8)
T, Py

Hence for this model, the function F in (4) is given by

ET P
F(T,P) =—aP + a,rctanhF ) (9)

c S

Further details concerning the derivation and attributes of this model are provided in [79, 80].

2.3.3 Hysteresis Models - Domain Wall Model

As detailed in Section 2.2, hysteresis in the relation between the applied field and resulting polarization
is an inherent property of all ferroelectric materials. We summarize here two techniques for modeling
hysteresis in high drive level applications. The first is based on domain energy relations while the second
illustrates a phenomenological Preisach characterization.

Polarization (C/m?)
°
Polarization (C/m?)

Ising Spin | |
-—- Langevin

L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0
Electric Field (MV/m) Electric Field (MV/m)

(a) (b)

Figure 8: (a) Ising spin and Langevin models for the anhysteretic polarization; (b) Fit to 600 V, 800 V,
1000 V and 1600 V PZT5A data using the model (14) with one set of parameters.
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The domain model is based on the observation that due to inclusions in the material, changes
in polarization resulting from domain wall movement have irreversible and reversible components. To
quantify the irreversible polarization, it is noted in [79, 80] that the polarization level for a given effective
field can be expressed as that for the ideal case minus losses required to break pinning sites. This yields
the relation

dPiry

Ijirr = an_k dEe

(10)
where P, is defined by (5) or (7) and k quantifies the average energy required to break pinning sites.
The formulation of (10) in terms of the applied field E yields the differential equation

d]:)i'r'r s Pan - ]Di'rr
- 11
iE  W-a (Pun — Piyr) (11)

where the parameter § = sign(dE) ensures that the energy required to break pinning sites always
opposes changes in polarization. The inclusion of the parameter § given by

g_{ 1, {dE>0and P < Py} or {dE <0 and P > P,,} 12

0, otherwise

enforces that solely reversible polarization changes take place when the field reversed at saturation until
the anhysteretic polarization is reached.

The second component of the polarization is the reversible polarization which models the effects of
domain wall bending. To first approximation, this is modeled by the relation

Proy = C(Pan - -P’L"I"I') (13)

where c is a parameter which must be estimated for the specific application (see [79, 80]).
The total polarization is then given by

P =Py + Pipr . (14)

To implement the model, the effective field for a given field and irreversible polarization level is computed
using (6). This value is then employed in either (5) or (7) to compute the corresponding anhysteretic
polarization. The subsequent irreversible polarization is determined by numerically integrating (11).
The total polarization is then specified by (14).

The experimental validation of the model for PMN transducers operating in the ferroelectric range
is illustrated in [79, 80] while validation for various PZT compounds is addressed in [81, 82]. The
predictive capability of the model is illustrated in Figure 8b. The parameters a,a,c, k and P, were
estimated through a least squares fit to 600 V data and the model, with the same parameters, was used
to predict the polarization resulting from 800 V, 1000 V and 1600 V inputs. The formulation of the
model in terms of electrostatic energy principles provides it with the capability for accurately predicting
the polarization throughout the operational range given only specified input levels.

A second advantage of this model lies in the fact that it can be inverted through consideration of a
complementary ODE. This permits the construction of an inverse compensator which can be employed
as a filter before the actuator to facilitate linear control design. Details regarding the construction of
the inverse are provided in Section 3.3 where the analogous magnetic model is outline.
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Figure 9: (a) Preisach plane S and (b) Restricted Preisach plane Sa.

2.3.4 Hysteresis Models: Preisach Model

A second technique for modeling hysteresis in a variety of smart material systems is based on the ap-
proximation of the multi-valued hysteresis map by a parallel collection of Preisach kernels. This provides
a phenomenological or empirical characterization of the input/output relations which circumvents un-
modeled or unknown physics. An advantage of this technique lies in its generality as evidenced by the
fact that the same model can be used to characterize the hysteresis in piezoelectric materials or shape
memory alloys (see Section 4.1). A second advantage is the fact that the resulting Preisach operator
can be inverted to facilitate linear control design. A disadvantage of the approach is that it typically
requires the estimation of a large number of nonphysical parameters and it does not utilize or provide
physical insights regarding the material dynamics of the system.

We focus on the Krasnolselskii-Pokrovskii (KP) operator, also termed a generalized Preisach oper-
ator, since it provides continuity with respect to both time and parameters and is amenable to approx-
imation [6, 7]. The reader is referred to [34, 35] for a discussion of adaptive control design for classical
Preisach operators defined in terms of piecewise constant kernels.

General Preisach operators are defined by

[Pu(v,6)](2) Z/S[ks(v,ﬁ(S))](t) dp(s) (15)

where ;1 € M is a finite signed Borel measure on the closed Preisach plane S = {(s1,52)|s1 < 52} as
depicted in Figure 9. The input is denoted by v while £ denotes initial states of the system. In classical
Preisach formulations, the kernel kg is defined through a linear combination of piecewise constants
whereas continuous, piecewise linear functions are employed in the KP kernel to ensure continuity with
respect to time and parameters. The characterization of hysteresis using either kernel requires the
identification of an appropriate measure u(s) which acts as a weight on the kernel.

To define the KP kernel, we consider translates rs, = r(v — s1) and rs, = r(v — s2) of a Lipschitz
continuous ridge function r(v) as depicted in Figure 10. For time intervals [t 1,%x] where the input v
is monotone, a monotone operator is recursively defined by

max{Rk_1,7(v(t) — s2)} if v is non-decreasing

[R(v, Rk-1)](t) = {

min{Ry_1,7(v(t) —s1)} if v is non-increasing

where
R — R(UaRk}—l)(tk) y k= 2, ’j
‘ R():é', k:]_,fE{—].’]_}
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Figure 10: (a) Ridge function (v — s). (b) Hysteresis envelop provided by the translates r1 and 7o of
the ridge function r(v).

defines the values of R at times tx. The KP kernel is then defined recursively on each subinterval by

[ks(0,)](8) = [R(v, Re-1)I(8) 5 T € [te—1,tk]- (16)

A typical path for ks is depicted in Figure 11 while details concerning the properties of the kernel are
provided in [6, 7].
To numerically implement the model, the measure p(s) is approximated by the expansion

m
HUm = Z Qp; O, (17)
i=1

where, as depicted in Figure 9, n; are nodes in the restricted Preisach plane Sa = {(s1, 52) |Smin <
s1 < s2 < Smag}, On; are weights, and §,, denotes the Dirac measure having an atom at n;. The KP
operator P, is then approximated by P, given by

[P (0, )](8) = D[k (v, 0)] (8) i, (18)
=1

As detailed in [6, 7, 32], the continuity and convergence properties of the KP operator lead to well-
posedness of the corresponding identification problem and provide a framework which is amenable to
implementation.

An attribute of both the classical Preisach and KP operators, which is crucial to control design,
is the fact that they can be inverted. We summarize here details regarding the inversion of the KP
operator and refer the reader to Section 1.4 for an example illustrating its use in control design.

r

\Y 1+
S1+ } } Vv
e 4t t 1 ﬁ

$1 &7
€Y (b)

Figure 11: (a) Piecewise monotone input v(¢). (b) Output from the KP kernel in response to the input.
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Figure 12: (a) Plant with input actuator hysteresis. (b) Approximate inverse compensator P,,! for the

hysteresis.

The subsequent development of the inverse operator P! follows that in [32]. We first note that if
uq(t) denotes the desired actuator input, the process of inverse compensation can be represented by

U = Pm(,uag) = Pm(P’rgl(udaf)I)ag) = Uq

as illustrated in Figure 12.
With the definition Aug = ug(t) — uq(to), it then follows that changes in the desired actuator input

on the interval [tg,t1] are given by

A’U,d = Pm(’U,f)—Pm(’U(),g)

([knq, (U’ gnz)](t) - [k'nZ (Uo, fnl)](t)) (8777

Il
iz

= [r(v —mn4) —r(vo — )] a; -

%]

Nn;ESA

For the piecewise linear ridge function

1 , s2<v—a
r(v—s2) =4 —14+2(v—s2)/a ,v—a<sy<w
-1 , v < 89

depicted in Figure 10, the change in the kernel at each node so = n; is given by

0 , N <vg—a
rlv—mni)—r(wy—mn;) =4 Arp, ,v9—a<n;<v (19)
0 , v < n;.
It then follows that
Aug = Z oy, — Z op; + Z Ary, o,
n;€S+ n;€S— n;€SA

where —
S ={n; € Salr(v—mn;) =—-1}

St ={n; € Salr(v—mn;) =1}
SA ={n;eSa|—1<r(v—mn;) <1}.

If Aw is less than or equal to the distance between adjacent nodes n;, then

Ar; = 2(v —vg)/a
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and (19) can be solved for v to obtain the relation

Przl(udafy):vo‘l'a(Aud_ Z an; + Z ani)/(2 Z ani)

n;eSt n;€S— n; ESA

for the inverse operator. As detailed in [32], an iterative procedure provides the inverse if Au is greater
than the distance between nodes. Experimental validation of this modeling and inversion procedure for
quantifying hysteresis for a piezoceramic stack is reported in [32].

2.4 System Models

The discussion in Section 2.1 indicates certain smart structure applications which utilize piezoceramic
and electrostrictive actuators while the models of Section 2.3 characterize certain material properties
for these actuator-sensor compounds. In this section, we illustrate the incorporation of the constitutive
relations from Section 2.3 in prototypical structural and structural acoustic systems, and the formulation
of the system model in a format suitable for control implementation. For brevity, we consider a thin
beam model and a coupled 2-D model as prototypes for structural and structural acoustic systems.
While both represent simplified scenarios, they provide the framework required for modeling more
complex systems as a prelude to control design.

2.4.1 Beam with Piezoceramic Actuators and Sensors

Consider a cantilevered thin beam with a pair of surface-mounted piezoceramic actuators as depicted in
Figure 13. For modeling purposes the beam is assumed to have length £, width b, and thickness h. The
density, Young’s modulus and Kelvin-Voigt damping coefficient for the beam and piezoceramic patches
are respectively denoted by py, Ep,cp, and ppe, Epe,cp,.. The transverse beam displacement is given
by w while p(¢,x) denotes an exogenous surface force to the beam. We note that for this configuration,
the linear piezoelectric equations (2) reduce to

D3 = d3103 + e3FE3 Direct
1 1% (20)
e3 = —o3 +d3z1— Converse
3 Epe 3 31 e

where V' denotes the voltage to the patches and we have employed the relation E = V/hp, in the
converse relation.

Figure 13: Thin beam with surface-mounted piezoceramic patches.
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As detailed in [9], force and moment balancing yields the strong form of the Euler-Bernoulli equations

0w 0? My Myt
p(x)m(t,-’ﬂ) + Oz (t,LE) —p(t,a:) + o912

(t, z)

w(t,0) = (?9—";’(15,0) =0 (21)

Mini(t,€) = =5 (t,£) = 0

along with appropriate initial conditions, as a model for the transverse beam dynamics. The composite
density and internal bending moment are given by

p(.’L‘) = pphb + 2ppebhpeszt(x)

22)
0w Bw (
; =FEIl(z)——(t I—— (¢
Mmt(t,.’ﬂ) (iI,‘) 8.7,'2( 7$)+CD 8x28t( 7'7")
where the characteristic function xp,; delineates the location of the rods and
Eyh3b  2b
EI("I") = ° + - pea3szt(~T)
12h3b 32b (23)
c
CDI(.’E) = Di2 + ?CDpea?)szt(-T)

with a3 = (h/2 + hye)® — h3/8. The first term in the definition of ET is the usual stiffness parameter
for a uniform beam while the second is due to the passive material contributions

h/24hpe 2
2/ Epcezbzdz = —Epeaz
h/2 3
from the converse patch relation. The factor of two results from invoking the symmetry of the two
patches. Integration of the strain rate for the beam and patch material yields the Kelvin-Voigt damping
parameter.

For the case when the patches are driven diametrically out-of-phase, the integration of the free strain
component of the converse relation yields the external moment

h/24hpe
Mewt(tal') = 2/ d31Epeb(V/hpe)Zdz
h/2 (24)
= KV (t)

where KZ = E,.bdsi(h + hye) and V() is the voltage to the patches. In applications, the actuator
coefficient Kp is typically identified for a given structure through a least squares fit to data.

To obtain a weak form of the model, we take the state to be the displacement w in the state space
X = L%(0,£) with the inner product

Y/
(6,9)x = /0 oy dz.

The space of test functions is taken to be V = HZ(0,¢) = {¢ € H?(0,£)| #(0) = ¢'(0) = 0} with the
inner product

l
(b.)y = /0 EI§"" do.
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It should be noted that with these choices, V' is continuously and densely embedded in X. Hence one
has the Gelfand triple V < X ~ X* < V* with the pivot space X.
A weak form of the model is then given by

Y/ Y/ Y/ Y/
/ piinp ds + / Monitp” da = / Moot das + / P da (25)
0 0 0 0

forallp € V.

The equations (21) and (25) with moments given by (22) and (24) model the actuator contributions
to the structure. The sensor attributes are modeled using the direct piezoelectric relation in (20). For
a beam in which strains are solely due to bending, the stress at a point (z, z.), where z, = (h + hyp,)/2
is the distance from the neutral axis of the beam to the center of the patch, is approximated by

O%w
03(t7$) = zcEpew .

In the absence of an applied field (E3 = 0), the direct piezoelectric relation then yields

0w
D3 = dglzcEpeW - (26)

The charge ¢(t) developed on the patch as the material strains is computed by integrating (26) over the
area of the patch to obtain

T2 aQ,w
q(t) = b/ d312:Epe—— dx
- P o2
ow ow
= Epedglbzc [ﬁ(t,xz) — %(t,xl)] .

Finally, the voltage V}, generated by the patch is computed by dividing the charge by the capacitance
Cpe to obtain

s [Ow ow
V) = K [ 32 002) - S2,2) (27)
where
K Epedz1b(h + hpe) .
2Cpe

Hence the patch can be used to sense accumulated strain.

The previous discussion illustrates the use of the direct and converse piezoelectric effects for em-
ploying piezoceramic patches as sensors and actuators in smart structures. Additionally, the dual
piezoelectric properties provide the patches with the capability for simultaneous sensing and actuating.
Self-sensing piezoceramic actuators were developed somewhat concurrently by Dosch et al. [27] and
Anderson and Hagood [2] while adaptive sensoriactuators were developed by Cole and Clark to address
difficulties associated with drifting capacitance [20]. Whether the patches are employed as isolated sen-
sors and actuators or as collocated sensoriactuators, they provide significant potential as transducers in
smart structures.
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2.4.2 Finite Dimensional Model

It is necessary to approximate the dynamics of the infinite-dimensional model (25) before it can be
employed for either simulation purposes or control design. We employ a Galerkin approximation in the
spatial variable to obtain a semidiscrete ODE system in time which is amenable to control formulation.
Specifically, the spatial basis is taken to be {¢; ;":"11 where ¢;(z) denotes the j™ cubic B-spline modified
to satisfy the fixed left boundary condition [68]. Approximate solutions

m+1

w™(t,z) = ) wi(t)hi(2) (28)

=1

are then considered in the subpace V™ = span{¢;}. To obtain a vector ODE system, the infinite
dimensional system (25) is restricted to V™ and posed in first-order form to yield

i(t) = Az(t) + Bu(t) + g(t)

) (29)
Z =X -

The state, control input, and control matrices are respectively defined by z(t) = [w1(¢), -+ , W1 (2),
W1 (t), -+ s Wma1 (1], w(t) = [u1(t),--- ,us(t)] and B = KBb. The component system matrices have the
form

0 I
Q'K Q'Cp

where

~ e o~
0l = /O pi; di l;

"
mag

V4 /)
K} = /0 EIg'¢lds  [p(t)]i = /0 plt,2) s de (31)
y/

(Coliy = | enTdda.
Details regarding the construction of the finite dimensional system can be found in [9, 77].

2.4.3 Nonlinear Actuator Models

The linear system model (29) is based on the assumption that the linear constitutive relations (20)
adequately model the actuator and sensor effects of the patches. As detailed in Section 2.2, however, both
piezoceramic and electrostrictive materials exhibit nonlinear constitutive behavior and varying degrees
of hysteresis at high drive levels which necessitates consideration of the hysteresis models discussed in

19



Section 2.3. The incorporation of domain wall or Preisach hysteresis models with the beam equations
yields the system
©(t) = Az(t) + [B(u)](t) + g(¢)

z(0) = zg

upon approximation. The nonlinear input [B(u)](t) = [P(u)](t)b where b, given by (30), incorporates
the spatial location of the actuator and [P(u)](t) quantifies the hysteresis and nonlinear behavior.
Details regarding the construction of B(u) for the analogous magnetic domain wall hysteresis model are
provided in Section 3.5 while it construction for the Preisach operator is illustrated in the context of
shape memory alloys in Section 4.1.

2.4.4 Structural Acoustic System

The second example which we consider is a prototypical structural acoustic system in which piezoceramic
actuators mounted on the structure are employed as actuators and sensors. To simplify the discussion,
we consider a rectangular cavity with a vibrating beam at one end as depicted in Figure 14. The
remaining cavity walls I" are assumed to reflect all acoustic vibrations. A force p modeling an exogenous
pressure field drives the system and produces unwanted noise in the cavity €.

As detailed in [9], for sound pressure levels on the order of those typically encountered in many
aeronautical and automotive applications, the acoustic dynamics in a medium with density ps can be
modeled by the wave equation

2
% =c2Ap , (z,9)€Q
(32)

Vé-n=0 , (z,y)€T

where ¢ denotes the acoustic potential, ¢ is the speed of sound, p = p fg—‘f is the pressure and V¢ = —u
is the field velocity. The balancing of velocity at the beam surface (g—z = wy) and incorporation of

r

pd

()

@) (b)

Figure 14: (a) Structural acoustic system; (b) Piezoceramic patches driven out-of-phase to create pure
bending moments.
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pressure as a force on the beam then yields the coupled model
pr 8¢ /
——=&d V¢ - Véd
| G Gmtan+ [ pvo veds

0%w 0%w 0%n BPw %
* /F o | P aar T /F Pl ozat 02"

op  ow
L2
A"

8 2

= / D KPui(t) xpe, (w)%dv + / pndry
To ;=1 z To

for all (¢,7) € V. The space of test functions is V = H(Q) x HZ(T) where H'(2) denotes the quotient

space of H*(Q) over constant functions and H3(T'y) is the subset H?(T'g) whose elements satisfy the fixed

boundary conditions for the beam. This model provides a baseline for comparison since it incorporates

the full physics for the system.

A second technique used to model the acoustic field produced by the vibrating structure is to
estimate the RMS sound power radiated from the structure through a discretization of Raleigh’s integral.
Radiation filters are then constructed to incorporate the physical mechanisms modeling the structural
acoustic coupling. These filters are combined with a state variable model of the structure, which includes
the input and output provided by piezoceramic actuators and sensors, to provide an augmented plant
model. Details concerning this modeling approach for structural acoustic systems can be found in [19].
While the accuracy of the approximations to the Raleigh integrals degrades near boundaries, the method
can lead to significantly lower-order systems than obtained through a full-order approximation of (33).
Furthermore, the prediction of sound levels solely through consideration of the structural vibrations
permits the elimination of acoustic sensors and promotes the use of smart material transducers such as
piezoceramic sensoriactuators. Hence the smart structure capabilities provided by these materials can
be utilized in structural acoustic applications.

2.5 Control Applications
2.5.1 Infinite and Finite Dimensional Control Problems

The problem of determining optimal voltages to patches employed as actuators in structural and struc-
tural acoustic systems leads to the formulation of infinite dimensional control problems with the models
(25) or (33) as constraints. Due to the nature of the patch inputs and outputs, these control problems
typically involve unbounded (discontinuous) input and output operators and are quite often formulated
as boundary control problems. The analysis of the linear quadratic regulator (LQR) problems associated
with these systems and the determination of convergence criteria for the resulting finite dimensional
systems has resulted in the development of a fairly extensive theory for linear models. Corresponding
infinite dimensional theory for control systems with nonlinear or hysteretic inputs is far less complete.
A detailed discussion of the infinite dimensional LQR theory associated with smart structures is beyond
the scope of this paper and the reader is referred to [3, 5, 9, 55] for details concerning the state of this
theory.
In subsequent discussion, we focus on finite dimensional control systems of the form

#(t) = Az(t) + [B(uw)](#) + 9(t)
y(t) = Cu(?)
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where z is a N x 1 state vector, y denotes observations in R and C is a P x N observation matrix
whose elements are specified by the form of the observations (e.g., see [9, page 232]). In this section, we
focus on the linear case [B(u)](t) = Bu(t) where B is an N x s matrix for structures with s actuator
pairs. We then consider the nonlinear case in Section 3.5 in the context of magnetostrictive actuators.

2.5.2 Feedback Control Design

We consider two cases for the exogenous force g(t¢): (i) g(¢) = 0 which can be used when controlling
systems subject to stochastic or modeling uncertainties, and (ii) g(0) = ¢g(7) which arises when modeling
periodic exogenous inputs. For the first case, the LQR problem concerns the determination of a control
u which minimizes

J(u) = /Ooo {(Qx(t), z(t)) + (Ru(t),u(t))} dt (34)
subject to
z(t) = Az(t) + Bu(t)

y(t) = Cx(t).

The matrix @ is chosen to satisfy kinetic and potential energy criteria and R weights the voltage
to the s patch pairs [4]. While theoretically attractive, the minimization of (34) requires full state
information which is typically not available in applications. This necessitates the consideration of a
dynamic compensator which estimates or reconstructs states before computing a feedback control.

As detailed in [8, 9], the optimal full-order control is specified by

(35)

u(t) = —Kxz(t) (36)
where the estimated state satisfies
Te(t) = Azc(t) + Bu(t) + F [y(t) — Czc(t)]
z(0) = z¢, -

(37)

Here K and F denote the compensator and feedback gains, respectively. We note that K and F are

chosen so that the reconstruction error |y(¢t) — y.(¢t)|] — 0 as ¢ — oo. Under usual observability and

controllability hypotheses (see [52]), the optimal feedback and compensator gains are given by
K=R'B™

N 38
F=pPCTR! (38)

where IT and P are unique nonnegative-definite solutions to the feedback (regulator) and compensator
(observer) algebraic Riccati equations

A+ ATTI —TIBR'BTI+Q =0

N N (39)
PAT + AP - PCTR'CP+Q =0,

respectively. As was the case with the matrices () and R, the matrices @ and R are design criteria for
the specific control application under consideration.
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For case (ii) in which ¢ is assumed periodic and 7 is commensurate with all frequencies present in
the exogenous signal, the optimal control is determined by minimizing

3w = 5 [ 1Qa(),5(0) + (Rut), u(e)} a (10)
subject to

z(t) = Az(t) + Bu(t) + g(t) , z(0) =z(7)

(41)
y(t) = Cx(t).
The optimal control in this case is given by
u(t) = —kz.(t) + R~ BT 2(t) (42)
where the reconstructed state is specified by the differential equation
&e(t) = Azc(t) + Bu(t) + F [y(t) — Czc(8)] + g(¢) (43)
2(0) = @o(T) .-
and the tracking variables are solutions to the adjoint equation
#(t) = —[A — BK]"2(t) + IIg(t) (@)

The feedback and observer gains K and F are defined in (38) and II is the solution to the feedback
Riccati equation in (39).

We refer the reader to [8, 9] for details concerning the original infinite dimensional control problem,
criteria which guarantee the convergence of finite dimensional gains, and examples illustrating the ex-
perimental implementation of the control method for a circular plate with surface-mounted piezoceramic
actuators.

2.5.3 Adaptive Feedforward Control

Currently employed adaptive feedforward algorithms are based on the representation of the plant and
control as finite impulse response (FIR) filters whose coefficients are determined using LMS algorithms.
This discussion provides only an overview of the methods and readers are referred to [19] for details
concerning feedforward control design for smart or adaptive structures, [62] for additional analysis
concerning acoustic systems, and [50, 89] for general theory of adaptive filters and feedforward control
design. s will be noted in this summary, feedforward control methods are based on superposition
principles and hence are linear by nature. Thus they are restricted to linear systems or systems which
have been suitably linearized.

Feedforward control design for structural or structural acoustic systems which employ piezoceramic
sensors or actuators can be considered in two steps (1) Represent the plant as an FIR filter and (2)
Construct an adaptive filter to determine the control. For a discrete signal u(k), a digital filter of order

+ 1 for the plant is

y(k) = (k)u(k) (45)
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