A NOTE ON UNIFYING ABSOLUTE AND RELATIVE
PERTURBATION BOUNDS
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Abstract. Perturbation bounds for invariant subspaces and eigenvalues of complex matrices
are presented that lead to absolute as well as a large class of relative bounds. In particular it is
shown that absolute bounds (such as those by Davis-Kahan, Bauer-Fike and Hoffman-Wielandt)
and relative bounds are special cases of ‘universal’ bounds. As a consequence, we obtain a new
relative bound for subspaces of normal matrices, which contains a deviation of the matrix from
(positive-) definiteness. We also investigate how row scaling affects eigenvalues and their sensitivity
to perturbations, and we illustrate how the departure from normality can affect the condition number
(with respect to inversion) of the scaled eigenvectors.
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1. Introduction. Traditionally perturbation bounds for eigenvalues bound the
absolute error in the perturbed eigenvalue. In contrast, the newer relative pertur-
bation bounds bound a measure of relative error [9]. Similarly, absolute bounds for
invariant subspaces bound the angle between original and perturbed subspace in terms
of an absolute eigenvalue difference, while relative bounds contain a relative eigenvalue
difference [11].

Usually one is interested in the differences between absolute and relative bounds.
For instance, under what circumstances is a relative bound tighter than an absolute
bound? Here we focus instead on the similarities, and in particular on the ‘heritage’ of
the bounds. For general purpose perturbation bounds, i.e. those that do not exploit
structure such as symmetry or grading of the matrix, we exhibit ‘universal’ bounds
that lead to absolute as well as a large class of relative bounds.

In §2 notation and facts for invariant subspaces are established. The universal
subspace bound is proved in §3, and §4 presents existing bounds that are special cases
of the universal bound. In §5 we derive a universal eigenvalue bound for diagonalizable
matrices in the two-norm, and in §6 in the Frobenius norm. The effect of row scaling
on eigenvalues and their perturbation bounds is investigated in §7.

Notation. I is the identity matrix; || - ||2 is the two-norm; || - || the Frobenius
norm; and || - || stands for both norms. The conjugate transpose of a matrix A is A*;
and At is the Moore-Penrose inverse. The condition number with respect to inversion
of a full-rank matrix Y is 5(Y) = ||V |2 [|[YT||2-

2. Invariant Subspaces. Let A be a complex square matrix. A subspace S is
an invariant subspace of A if Az € S for every z € S [6, §1.1], [17, §1.3.4]. Let the
perturbed matrix A + E have an invariant subspace S. As in [10, §2] set

sin® = PP,

where P is the orthogonal projector onto S+, and P is the orthogonal projector onto
S. When dim(S) = dim(S), the singular values of PP are the sines of the principal
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angles between S and S [7, §12.4.3], [17, Theorem L1.5.5]. The goal is to bound || sin O,
where || - || is the two-norm or the Frobenius norm.
We make frequent use of the following fact [6, (1.5.5)], [12, Theorem 5.8.4],

(2.1) PA=PAP, (A+E)P=P(A+E)P.
The first equality holds because St is an invariant subspace of A* [17, Theorem
V.1.1].

3. A Universal Subspace Bound. For general complex matrices, a basis-free
bound for || sin ©]| is derived.

Let A and A+ E be complex, non-singular matrices. Define a separation between
A and A + E, with regard to the subspaces S and S as

sepy; = min  ||P (A" FZ(A+E) - AT Z(A+ E)'H P,
’ |Z||=1,PZP=2Z

where k and [ are real numbers, and the powers are to be interpreted according to [8,
Definition 6.2.4].
THEOREM 3.1. If A and A+ E are non-singular then

Isin®]] < [[A™"E(A + E)~"||/sepy .

Proof. From E = (A + E) — A follows
A*EA+E)y ' =AM A+ B - ARA+ BT
and (2.1) implies
PA*E(A+E)"'P=PA ™" sn0® (A+ E)''P - PA'* sin® (A + E)~'P.
Hence
A E(A+ E)7!|| > |[PA*E(A+ E) ' P|| > sepy, || sin ],

since sin® = Psin®P. O

The next lemma expresses the separation in terms of eigenvalues when the matri-
ces are diagonalizable. Let A and A + E be diagonalizable. Then there are matrices
Y and X with linearly independent columns so that S* = range(Y), S = range(X),
and

Y*A=AY*, (A+E)X = XA,

where A and A are diagonal. Denote the two-norm condition numbers of these bases
by, respectively,

=Y Y2, &= 1X2 1XT ..

In the case of diagonalizable matrices the Frobenius-norm separation can be bounded
in terms of an eigenvalue separation.

LEMMA 3.2. If A and A + E are diagonalizable and non-singular then in the
Frobenius norm

~

A=A
— min —,
KK xeAAeh |A]F A

SePy,; >
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where the minimum ranges over all diagonal elements A of A and all diagonal elements
A of A.

Proof. The proof is similar to those for the Sylvester equations in [14, §2.4].

Let Y = QR and X = QR be QR decompositions where ) and Q have orthonor-
mal columns, and R and R are non-singular. Let Z; be a matrix that attains the
minimum in sepy ;. From P = QQ* and P= QQ* follows in the Frobenius norm

sepy = ||[R™* (Al”“ V*ZoX A=A Y*Zo X AH) B Yr
SN YZ XA - AR Y Zo X A
- IRll2 1 R]l2

R

i xeaAeh [N

>

where the last inequality is obtained by considering individual elements of the matrix
inside the norm, summing them up according to || M||% = 3=, ; [M;;]* and using the
fact

(S P LicCil | S S—
R IR R 1A

O

Consequently, the bound in Theorem 3.1 can be expressed in terms of an eigen-
value separation when the matrices are diagonalizable:

COROLLARY 3.3. If A and A + E are diagonalizable then

_/\|

sin@||p < ki [|[A*E(A+ E)™! min AV
lsin®ll < w& AT B + B) e/ | min St

where the minimum ranges over all diagonal elements A of A and all diagonal elements
X of A.

4. Existing Subspace Bounds. We show that specific values for £ and [ in
Theorem 3.1 and Corollary 3.3 lead to existing bounds. We also derive a new relative
bound for normal matrices that reduces to an existing bound in the special case of
Hermitian positive-definite matrices.

Let A and A + E be complex square matrices.

Case k =1 = 0. Theorem 3.1 is identical to the absolute bound [10, Theorem
3.1],

Isin @ < [IE]l/sepo.o,
where

sePp o = min |PAZ — Z(A+ E)P||,
’ |Z||=1,PZP=2Z

since (2.1) and Z = PZP imply PZ(A + E)P = Z(A + E)P.
When A and A + E are diagonalizable, Theorem 3.1 implies the Frobenius norm
bound [10, Theorem 5.1], [11, Theorem 3.4]

||sin®||r < ki ||Ellp/ min X=Xl
AEANEA
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When A and A+ E are normal, one obtains one of Davis and Kahan’s sin © Theorems
2, §6], [3, §2],

Isin®llr < |IEllr/ min |\~ Al

)

Case k =1, 1 = 0. Theorem 3.1 is identical to the relative bound [10, Theorem
3.2],

[|sin@| < ||A’1E||/sep1,0,
where

sep; o=  min  ||[PA"! (PAZ — Z(A+ E)P) I,
’ |Z||=1,PZP=2Z

because (2.1) and PZP = Z imply PZP = PA~1PAZ.
When A and A + E are diagonalizable Theorem 3.1 implies the Frobenius norm
bound [10, Theorem 5.1], [11, Theorem 3.4]

|sin®||F < k& ||A_1E||F//\€r[r\1’i{1€i\ %
Case k =1 =1/2. Theorem 3.1 reduces to the relative bound
Isin @] < |A~/2B(A + E) 12| /sepy 4,
where

sepri = min [[PA"/? (PAZ—Z(A+E)P) (A+E)"'2P)|.

11
2’2 | z||=1,PZP=2

When A and A + E are diagonalizable Theorem 3.1 implies

|sin®||F < ki ||[A"Y2E(A+ E)™Y?||p/ min LA/;’\'
AEANEA |)\ 5\|

When A and A + E are also normal then Theorem 3.1 implies the following
relative Frobenius norm bound, which contains a quantity § that can be interpreted
as a deviation of A + E from definiteness.

THEOREM 4.1. If A and A+ E are normal and non-singular, and

m = ||[ATVPEATY? ||, < 1

then
: nF A=A
sinO||p <9 min ——,
POl <0 A= [\ ke Vs

where

e = |ATPEAT g, 8= |AVPOATV,

and U is a unitary polar factor of A+ E.



Proof. Lemma 3.2 implies

NS IRV

For the remaining factor in the bound we show
|A™2E(A+ E)™?||p < 8np/y/1—ns,
similar to [11, Theorem 3.6]. Start with
A7 2E(A + E)™'2||r < nr |A"?(A + E)712 2.

%P4

Let A=UH and A+ E = UH be polar factorizations, where U and U are
unitary, and H and H Hermitian positive-definite. We use the fact that polar factors
of normal matrices commute [4, Lemma 3.2] and

AV (AYR)r = H = (AM2)* A2
for any normal, nonsingular matrix A. If A;(A4) denotes an eigenvalue of A then
|AY2(A+ BE)7H 2|3 = || AY2HH(AY2)* |2 = max | \i(H 7 H))|
= max|\;(U(4 + E) " AU")
= max|\(UA2 (I + A7 EATY2) 71 AV20)
= max|\i(( + ATVPEAT A2 A
<N = ATREATVE) T | AU ATy

A,
-2
where the last inequality follows from [7, Lemma 2.3.3] and the fact that A2 and
U* commute. 0

In the special case when A+ E is also positive-definite, U = I and § = 1, and when
A is also positive-definite 772 < 1. Thus, when A and A + E are Hermitian positive-
definite, Theorem 4.1 implies the relative Frobenius norm bound [15, Theorem 1], [14,
Theorem 3.3] (see also [16, Theorem 1]),

<

nr - |A = 5\|
/ min ——.
VI—1m2 " xeaded /)X
Case k = 0, ] = 1. Now the perturbed, instead of the true eigenvalue is in the
denominator of the separation

|sin©|| < |E(A + E)™||/sepq 1,

[|sin®|F <

where

sepg; =  min || (PAZ _Z(A+ E)ﬁ) (A+E)'P|.
|Z||=1,PZP=Z

When A and A + E are diagonalizable Theorem 3.1 implies

lsin®llr < x& [E(A+ E) g/ min 222
AeAdek A




5. A Universal Eigenvalue Bound in the Two-Norm. We bound, in the
two-norm, the distance of a single perturbed eigenvalue \ to the eigenvalues of a
diagonalizable matrix A.

Let A be a complex, non-singular, diagonalizable matrix, and A + E a complex
non-singular matrix with eigenvalue A. Let A = XAX ! be an eigenvalue decompo-
sition of A, where

is a diagonal matrix whose diagonal elements are the eigenvalues \; of A, and
(A+ E)z = Az,
where & is a non-zero vector. Let
k= [1X |2 [ X2

be the two-norm condition number with respect to inversion of the eigenvector matrix
X.
THEOREM 5.1. If A is diagonalizable then

= A —k -
in—<k||AT"E(A+ E .
I I ( )l
Proof. From (A + E)z = A& follows
i=—(A-A)"'Ei=—(A-A)'A* A *E(A+ E)"' (A+ E)'3
= —(A\T'ATF N1 AT AR E(A + B) .

Now apply the eigenvalue decomposition of A, take norms on both sides and use the
fact that
1 A=A
in

AT, = RIA=R) =1, A A

Several existing bounds follow as special cases from Theorem 5.1.
Case k =1 = 0. Theorem 5.1 is identical to one of the absolute bounds by Bauer
and Fike [1, Theorem IIIa]

min[X; - A| < & | E]..
k3

Case k =1, 1 = 0. Theorem 5.1 is identical to the relative bound [4, Corollary
2.2]

Xi— A
min A | < k|| AT E|..
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Case k = 0, | = 1. Theorem 5.1 is identical to a relative bound, where the
perturbed eigenvalue is in the denominator,

= A
min

= <k|B(A+E) 2.

6. A Universal Eigenvalue Bound in the Frobenius Norm. We bound, in
the Frobenius norm, the distances of all eigenvalues of A + E to those of A.
Let A and A+ E be a complex, non-singular, diagonalizable matrices. Denote by

A=XAX"', A+E=XAX"!

eigenvalue decompositions, where

are diagonal matrices whose diagonal elements are the eigenvalues of A and A + E,
respectively. Also let

K=[X2 X o, &= (X[ IX 2

be the two-norm condition numbers with respect to inversion of the eigenvector ma-
trices X and X , respectively.

THEOREM 6.1. If A and A+ E are diagonalizable then there is permutation T
such that

it Ar ol

R 2
Ai — Ars o _

Z <M> < kk||[ATFEA + B)7Y|p.

Proof. The proof proceeds analogously to the one for [4, Theorem 5.1]. O

Several existing bounds are special cases of Theorem 6.1.

Case k =1 = 0. Theorem 6.1 is identical to the absolute bound of the extended
Hoffman-Wielandt theorem by Elsner and Friedland [5, Theorem 3.1],

; D= Al < ki |E|F.

Case k =1, 1 = 0. Theorem 6.1 is identical to the relative bound [4, Corollary
5.2], as well as the multiplicative bound [13, Theorem 2.1'] with D; = I and D, =
I+ A'E,

[ N 2
)\i - /\T i ~ _
2 (%) < Ki | AT E| p.

i



7. Effect of Scaling. We examine how row scaling affects eigenvalues and their
perturbation bounds.
The motivation is the following. In the two-norm bound for £ = 1,1 =0 in §5,

A = A
min | | <k|AT1E|2,
i .

the term A~!E is invariant under row scaling, because if we row-scale A and A+ E to
DA and D(A + E) for some non-singular D, then (DA)~'(DE) = A~'E. Hence the
row-scaled matrices have the same relative backward error as the original matrices.
This is also true for the corresponding Frobenius norm bound in §6. Two questions
arise: First, how do the eigenvalues change under row scaling? Second, how does the
condition number & of the eigenvectors change under row scaling?

7.1. Effect of Scaling on Eigenvalues. We determine relations between the
eigenvalues of A and AD.

Let A and D be complex matrices of order n, and let \; be the eigenvalues of A
and p; the eigenvalues of DA, ordered in decreasing magnitude,

Mol ool € oo < .
First, the eigenvalue products of A and DA differ by the determinant of D,
1o i, =det(D) Ay -+ Ay,

a consequence of det(DA) = det(D) det(A). This equality suggests that the change in
eigenvalues is determined mostly by D alone, without the influence of other factors,
such as the eigenvector conditioning k.

Second, if A is normal, then the ratio of corresponding eigenvalues is bounded by
1DIl;

sl <IIDI Al 1<i<m,

which follows from the singular value product inequalities [8, Theorem 3.316(d)].
Third, when A is only diagonalizable, the corresponding bound turns into a rela-
tion between partial eigenvalue products,

il < B IDIDT M- N, 1<i<n,

which follows from [8, Theorem 3.3.2]. However this bound is not likely to be tight
due to the presence of the eigenvector condition number x.

7.2. Effect of Scaling on Eigenvector Condition Number: Matrices of
Order 2. We examine the effect of row scaling on the condition number with respect
to inversion of the eigenvectors.

In particular, we want to know how the condition number for the eigenvectors of
DA compares to k, the condition number of the eigenvectors of A. If the two eigen-
vector condition numbers have the same order of magnitude then the perturbation
bounds for the eigenvalues of A and DA provide similar estimates. In this case, the
eigenvalues of the scaled matrix DA are about as sensitive to perturbations as the
eigenvalues of A, and the scaling has not done any harm.

In general, by how much can the condition numbers for eigenvectors of DA and
A differ? To get a feeling for the condition number of the eigenvectors of a scaled
matrix, we first consider matrices of order 2.
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The Original Problem. Consider a non-singular diagonalizable triangular matrix

AE()‘l A”) where A # As,  Aphs # 0.
2

An eigendecomposition is A = XAX !, where

(M _ (1 ¢ _
A:( )‘2)’ XZ( 1)’ gz)\z—)\l'

Since | X||r = ||X Y|r = /2 + |£]?, the Frobenius norm condition number of the
eigenvectors is

n
A2 — N\

ke (X) = X[ XYl = 2 + ‘

The condition number is small if ||<|A; — Az|. This means the eigenvalues of A are
well-conditioned if the non-normality 7 is not much larger than the absolute eigenvalue
separation.

The Scaled Problem. The row scaling is given by a non-singular diagonal matrix

D= (dl ) where dids # 0.
dy

We also assume that dj A1 # daA2, so

_ (diAr diy
DA= ( dm)

is diagonalizable with distinct eigenvalues. An eigendecomposition is DA = XAX !
with

= (1 ¢

%= ( 1) ,

din n 1 dy Ao
_ G h =% 22
dodg —dih | M1-w e Y=0TN

and
£=

The factor |n|/|A1| can be interpreted as a relative departure of A from normality,
while w is a measure for the eigenvalue separation of D A.

The eigenvector condition number kr(X) = 2+ |£|? indicates how sensitive the
eigenvalues of DA are to perturbations in the matrix. Since, by assumption, w # 1,
we distinguish two cases.
lw| < 1:

F_ M
§=—y, 1+ 0W),

and the condition number for the eigenvectors of DA is bounded by

kp(X) <2+ ‘)% 1+ O(|w])) .
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|w| > 1z

. nl 1
e=-35 (10 (3));

and the condition number for the eigenvectors of DA is bounded by

o (1o ()

We conclude that for diagonalizable triangular matrices of order 2, the condition
number of the eigenvectors of DA is governed by the relative departure from normal-
ity n|/|A1| of A. If the relative departure from normality of A is moderate or low then
eigenvector matrices of any row scaling DA are well-conditioned with respect to in-
version and the eigenvalues of the row scaled matrix DA are well-conditioned. When
|daAa| > |diA1| (i.e. |w| > 1) the scaling can even improve the condition number of
the eigenvectors.

Therefore the conditioning of the eigenvalues of a scaled 2 x 2 triangular matrix
is governed by the relative departure from normality of the original matrix.

rr(X) <2+ ‘i
A1

7.3. Effect of Scaling on Eigenvector Condition Number: Matrices of
Order n. We extend the above observations for matrices of order 2 to matrices of
order n.

The Original Problem. Consider the diagonalizable triangular matrix

n—k k
n—k Tl N
a=i (" n)
of order n, where 71 and T, are triangular, and the eigenvalues of T are different
from those of T5. A similarity transformation to block diagonal form is A = XAX -

where
_ (T _(I X
A:( TQ), X:( I),

and X; satisfies X17» —T1 X; = N. The condition number of the similarity transfor-
mation is

ki (X) = [IX[|r 1XHIF = n+ | X7

To extract X;, consider one column of X175 — T7X; = N at a time and stack
up the columns. The result is a non-singular, block-lower triangular system of order
k(n — k), which in the case k = 3 looks like

(TQ)HI T1 X161 N61
(T2)121 (T2)22I - T, Xies | = | Nex |,
(To)13  (To)asI (T2)ss] Ty Xies Nes

where e; is the ith column of I. With ® the Kronecker product and vec(A4) the vector
of columns of A [8, §4.2], one can write X1T» — T1 X; = N as [8, §4.3]

(T ® I) — (I ® T1)] vec(X1) = vec(NV).
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The Scaled Problem. Now consider the row scaled matrix DA, where

_(D:
D:( m)’

and D; and D, are non-singular diagonal. We also assume that the eigenvalues of
DTy are different from those of DsT5. Then

_(Di\Ti DiN
ba= ( Dsz)

can be reduced to block-diagonal form via a similarity transformation. That is, DA =

XAX~! with
- (I X
X:( I),

Xy D>T» — DTy X; = DN,

and X, satisfies

or
DX, DT, — Ty X, = N.
In Kronecker product form this is
[(D2T)" ® D) — (I ® Ty)] vec(X1) = vec(N).
Solving for X; gives
vec(X1) = —(I — W)L vec(T{ ' N), where W = (D,T»)T ® (D,Ty)7L.

As before, we interpret || vec(T; N)||2 = || Ty ' N||r as a relative departure of A from
(block) normality, while ||W||2 indicates how far the two sets of eigenvalues of DA are
apart.

By assumption, the diagonal elements of DT and D,T5 are different, so ||W||2 #
1. If [W]|2 < 1 then

I vee(Ty "Nl _ 1Ty "Nl
=Wk 1-W’

1 X1llr = [l vec(Xy)ll2 <

and the condition number for the similarity transformation is bounded by
kp(X) <n+ [T INIE A+ O(IW]) -

Hence, if the relative departure from (block) normality of A is moderate or low then
eigenvector matrices of any row scaling DA are well-conditioned with respect to in-
version and the eigenvalues of the row scaled matrix DA are well-conditioned.
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