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Abstract

This paper summarizes the development of a homogenized free energy model which characterizes the temper-
ature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials. A kernel
for the model is developed through mesoscopic energy analysis and extended to provide macroscopic constitu-
tive relations through stochastic homogenization techniques based on the assumption that certain underlying
parameters are manifestations of underlying densities rather than constants. Mechanisms characterizing the de-
crease in hysteresis and saturation polarization polarization as temperatures are increased are constructed using
asymptotic properties of the kernel which is derived from statistical mechanics tenets. Attributes of the model
are illustrated through comparison with PMN-PT-BT data.
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1. Introduction

Transducers employing relaxor ferroelectric materials are increasingly considered for applications ranging
from sonar transduction to high precision optics due to their relatively large stroke capabilities and nearly
anhysteretic behavior when employed within their diffuse transition region. However, the price paid for these
superior performance capabilities is strong temperature-dependence in the dielectric properties of the materials.
As illustrated by quasistatic PMN-PT-BT data in Figure 1, a decrease of 40°C near the freezing temperature
can lead from anhysteretic to hysteretic E-P relations with a significant increase in the saturation polarization.
Since heat produced during transduction is proportional to the area of the hysteresis loop, materials operating
in hysteretic regimes exhibit increased temperatures which subsequently reduces the hysteresis — this process
proceeds until an equilibrium temperature is reached. To place the magnitude of these effects in perspective, we
note that a PMN-driven flextensional sonar transducer submersed in water experiences a temperature increase of
approximately 40°C before equilibrium is reached [9]. Although less dramatic, similar mechanisms degrade the
accuracy of relaxor-based nano- or micropositioners unless temperatures are carefully regulated. This motivates
the development of comprehensive material models which characterize the temperature-dependent dielectric
behavior in a manner which facilitates subsequent transducer design and model-based control implementation.

A number of the initial models for the relaxor ferroelectric compound lead magnesium niobate (PMN), and
derivatives doped with lead titanate (PT), barium titanate (BT) and strontium titanate (ST), focused on the
quantification of the anhysteretic behavior above the freezing temperature Ty — e.g., see [2, 3, 4, 5, 6]. Smith and
Hom subsequently incorporated the hysteretic low-temperature behavior through the development of domain wall
models having temperature-dependent coefficients [13, 14]. Whereas these models are very effective for symmetric
loop behavior, they require a priori knowledge of turning points to guarantee biased minor loop closure which
precludes their use in feedback control designs for transient dynamics.
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Figure 1: Decreasing hysteresis and saturation polarization of PMN-PT-BT as a function of increasing temper-
ature (from [13, 14]).

In this paper, we extend the homogenized free energy framework, developed in [17] for ferroelectric materials,
to incorporate temperature effects inherent to relaxor ferroelectric compounds. In Section 2, we summarize
the previous fixed-temperature model which is comprised of an energy-based kernel derived at the mesoscopic
level with macroscopic effective parameters determined through stochastic homogenization techniques. Ther-
modynamic properties of the kernel are exploited in Section 3 to construct mechanisms that incorporate the
temperature-dependent behavior illustrated in Figure 1. Attributes of the model are illustrated in Section 4
through a comparison with quasistatic PMN-PT-BT data.

2. Isothermal Hysteresis Model

To provide the framework for incorporating temperature-dependent behavior, we summarize first the hys-
teresis model developed in [17] for ferroelectric materials.

2.1. Helmholtz and Gibbs Energies

As detailed in [17], combination of the internal energy derived under the assumption that dipoles align either
with the applied field, or diametrically opposite to it, and classical entropy relations yields the temperature-
dependent Helmholtz energy relation

E}, P,

Y(P,T) = — [1—(P/P)*] + ghTiF {Pln<£+€;> + P,In(1 — (P/P,)?)| .

(1)

Here Ep, T, and P;s respectively denote a bias field, the Curie temperature and the saturation polarization. It
can be easily verified that (1) incorporates double well behavior for T < T, and a single potential well for
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Figure 2: (a) Helmholtz energy 1) and Gibbs energy G for increasing field £ (E2 > E; > 0). (b) Dependence of
the local average polarization P on the field F.

T > T, in accordance with the ferroelectric to paraelectric phase transition associated with materials exhibiting
second-order phase transitions.

Whereas derived from statistical mechanics tenets, the Helmholtz relation (1) is often better suited for
qualitative rather than quantitative characterization due to the restricted assumptions leading to its formulation.
To provide additional flexibility and efficiency in fixed-temperature regimes, a second choice for the Helmholtz
functional is the piecewise quadratic construct

in(P + Pg)? , P<—Pr
W(P)=1{ 31(P—Pr)® , P =Py (2)
(P = Pr) (5 = Pr)  IPI<Pi

which can be interpreted as being derived through Taylor expansions at each of the equilibria of (1). As illustrated
in Figure 2, P; and Pg respectively denote the inflection point and polarization at which the minimum of
occurs.

Recalling that the electrostatic energy is given by Ug = —p - E, where p is a dipole in an electric field E, we
construct the Gibbs energy relation

G=1v-EP (3)
where v is given by (2) or (3). The behavior of G for increasing fields is illustrated in Figure 2(a).

2.2. Local Polarization Relation for Negligible Thermal Activation

For operating regimes in which thermal activation is negligible and relaxation times are small compared
with drive frequencies, the local average polarization P is determined directly the minimization of the Gibbs

energy (3). For the Helmholtz relation (1), enforcement of the necessary condition g—IGD = 0 yields

P(E) = Pstanh <%)

where o = 2= and a(T) = £2L. The kernel resulting from the piecewise quadratic relation (2) has the general
form

P(E) = %E + Pré (4)



where 6 = —1 for negatively oriented dipoles and § = 1 for those with positive orientation. To specify d and
hence P more specifically in terms of the initial dipole orientations and previous switches, we employ the Preisach
notation and take

0
[P(E;E.,0)|(t)={ % —Pr , 7(t) # 0 and E(max7(t)) = —F, (5)
0 #0

where

[P(E; B, €)](0) = q € , —E. <
E4+Pr , E(0)>E.

defines the initial states of the kernel. The local coercive field
E.=n(Pr— Pr) (6)

quantifies the field at which the negative well ceases to exist and hence a dipole switch occurs. Finally, if ¢,
designates the final time under consideration, the set of switching times is given by

T(t) = {t € (0,t7]| E(t) = —E, or E(t) = E.}.

The behavior of the piecewise linear hysteron (4) or (5) is illustrated in Figure 2(b), and this is the kernel we
consider throughout the remainder of the development.

2.3. Local Polarization Relation Incorporating Thermal Activation

To include the effects of thermal relaxation, it is necessary to balance the Gibbs energy G with the relative
thermal energy kT /V, where k and V respectively denote Boltzmann’s constant and a reference volume, through
the Boltzmann relation

w(G) = Ce=CV/RT,

The constant C' is specified to guarantee integration to unity when considered over all admissible dipole orien-
tations.
The local average polarization in this case is given by

P=a. (P)+a_(P.) (7)

where x; and x_ respectively denote the fractions of dipoles having positive and negative orientations and
(Py),(P_) are the associated average polarizations. As detailed in [17], the latter are quantified by the general
relations

e —P;
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I — 0o
Evaluation of the integration constant subsequently yields
o —P;
/ Pe—G(E,P)V/k:TdP / Pe—G(E,P)V/deP
(Py) = P (P =T ,
/ o—G(E.P)V/KT 4p / o—G(E.P)V/KT 1 p
Pr o

The evolution of dipole fractions are quantified by the differential equations

Ty = —pr-Ty+pq2_

T =—p_qr_ +py_ay



which can be simplified to
by =—pr-zy +p4(1-2z4)

through the identity x4 +x_ = 1. Here

Py —Pr+e
) / o—G(E,P)V/KT g p ) / o—G(E,P)V/KT ;1 p
Pr—e —Pr
Py+— = ) ) P—+ = — € (8)
T(T) / o~G(E.P)V/KT g p T(T) / Frv o~ G(B.PYV/KT gp
Pr—e — 00

respectively denote the likelihoods that dipoles switch from positive to negative, and conversely. In (8), ¢ is
a small positive constant and 7 denotes the material-dependent relaxation time. As detailed in [17], the local
average polarization relation (7) converges to the piecewise linear relation (5) in the limit k7/V — 0 of negligible
relative thermal energy.

2.4. Macroscopic Polarization Model

The local polarization relations (5) and (7) are derived under the assumption of a uniform lattice and effective
field. Hence they provide adequate approximations for certain single crystal compounds but neglect the effects of
polycrystallinity, material and stress nonhomogeneities, and variable effective fields which contribute significantly
to the hysteretic behavior of general polycrystalline compounds. We incorporate these effects by considering the
local coercive and effective fields to be manifestations of underlying distributions rather than constants. This
provides low-order macroscopic polarization employing the relations (5) or (7) as a kernel.

It is demonstrated in [17] that distributed coercive and effective field behavior can be incorporated through
the general formulation

P(E))(t) = / h / " (B BP(E. + E: Ee,©)(t) dE. dE. (9)

where P is given by (5) or (7). The densities v, and v, characterizing the coercive and effective field distributions
must satisfy certain physical decay criteria but otherwise can be considered to be general. Details regarding the
formulation of the model and identification techniques for estimating the general densities can be found in [10, 12].

Alternatively, one can consider parametric forms for the densities which satisfy the constraint that the coercive
field is positive and both densities exhibit exponential decay. In this latter vein, we consider the choices

&l 2
V(B = cre~n(Fe/Ee)/2
E%/b (10)
vo(E.) = cae™ /b,
It is established in [1] that if ¢ is small compared with E., the norm and variance for the lognormal distribution
have the approximate values o o
(Ey~=E. , o=2F.c.

These relations can be employed to obtain initial parameter estimates which reflect properties of the measured
data. In the next section, we detail the modifications required to incorporate temperature-dependence in the
densities (10) and hence the polarization model (9).

3. Thermal Hysteresis Model

Because the Helmholtz relation (1) was constructed through a balance of internal energy and relative entropy
over a representative volume, it encapsulates the diminishing hysteresis observed in materials exhibiting second-
order phase transitions as temperatures are increased through the Curie point. However, its applicability for
characterizing general temperature-dependent behavior of the type illustrated in Figure 1 should be considered



as qualitative rather than quantitative due to the restricted assumptions underlying its formulation. Instead,
we use it to predict extensions to the piecewise quadratic functional (2) to incorporate relevant temperature-
dependencies.

3.2. Model Formulation

Analysis of the data in Figure 1 indicates that as temperatures are increased through the freezing temperature
T, the local coercive field F., local remanence value Pr and inflection point Py all decrease. We focus first on
the latter.

For the Helmholtz energy relation (1), the inflection point P; is determined by g%@" = 0 where G is given (2).
Since

0’°G —E, E,T 1

3P2 B P@ 1101:)31_(P)/F)s)27

+P[(T) = +P,\/1—T/T..

Because the coercive field E. is the point at which dipole switches occur, it follows that

this yields

E E,T
E(T) = FhPI(T)— Th arctanh(P;(T)/Py)
S c
E,T
= En/1-T/T.— Th arctanhy/1 — T/T,.
(&
E,T 1 (11)
= En/1-T/T.— :’F { 1—T/TC+§(1—T/TC)3/2—|—...

1T
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Finally, through the relation (6), the local remanence polarization

Pr(T) = ch’T)+PI(T)

FE 17T
- %(I*T/Tc)g/z |:1§T+-~~:|+Ps\/]—T/Tc

inherits temperature-dependence from both F. and P;.
We generalize the expansions in (11) and (12) to obtain

(12)

E.(T) = Ey(1 — T/T,)"

and
Pr(T) = %(1 -T/T.)? + P;(1-T/T,)".

The temperature-dependent coercive field is employed in the density v of (10) and the temperature-dependent
remanence value is incorporated in the linear kernel P given by (4) or (7).

3.2. Model Implementation

To implement the model (9), it is necessary to approximate the integrals in a manner which is sufficiently
efficient to permit eventual real-time control implementation. We accomplish this by discretizing the integrals
via a composite Gaussian quadrature rule followed by development of a highly efficient matrix algorithm for
evaluating the if-then constructs encapsulated in the kernel definitions (4) or (5). Details regarding these
algorithms can be found in [17].



The assumption that densities exhibit exponential decay permits us to truncate the domain. A composite
Gaussian quadrature discretization on the resulting compact support yields the approximate polarization model

N; N;
5 —E2 /b _n /E. c]?
[PE,DN) =Y S [P(Ee, + E; Ee, &)](t)e 7 PeIn(Ee[Be(D)/26] 0y (13)
i=1 j=1

where E, ., E., denote the abscissas associated with respective quadrature formulae and v;, w; are the respective
weights — e.g., see pages 698-699 of [18].

We now provide details illustrating the evaluation of the kernel [P(E., + E, E.,,&;)](t). The crux of the
algorithm entails the determination of the active kernel branch indicated by (5) while avoiding the inefficiency
inherent to direct evaluation of if-then statements. To motivate the algorithm, we suppose that we want to
find the polarization corresponding to the effective field E = E(t;,) + E, at the k** time step for a fixed variation
E, and coercive field E,. If the polarization at the previous (k — 1)*" time step is on the positive branch, then
P(Ey) is on the positive branch if F — (—E.) is positive and on the negative branch if F — (—E.) is negative.
If P(Ek_1) is on the negative branch, then P(FE})) is on the negative branch if £ — E, is negative and on the
positive branch if E — E. is positive. Hence the polarization at P(E}) depends on E + E. if P(Ej_1) is on the
positive branch and E + E. if P(Ey_1) is on the negative branch. Thus, we are interested in the quantity

A =sign(E + AgE,)

where Aq denotes the polarization branch at the previous time step and

1, x>0
sign(x) = 0, x=0
-1, z<0.

We now use A in an algorithm to compute P. We begin by defining the matrices

E., - E., Ey+E., --- Ek—i—EeNj
Eo=1 : E. = : :
ey, Bex, I nixw Byt Eey - Ep+ Eey, NixN;,
-1 -1 1 1
Ay =
-1 -1 1 1 NixN,
and weight vectors
—-E2 /b
WT: |:w16E31/b S W e eNj/ :|
1x N;
VT = [vle_[ln(Eq [Eo)[2e)” | . 'UNie_[ln(ECNi /EC)/QC]2:| .
1XN;

At each time step we compute P = %Ee 4+ PrA and use these values to calculate the matrix A as given by

A =sign(E, + AgE.).

Finally, we update
— 1~
P=-FE.+ APy
n

Ag=A
and perform the matrix-vector multiplication
P=CcvV'PW

to compute the sum.



4. Experimental Validation

To illustrate the performance of the temperature-dependent hysteresis model, we use it to characterize the
PMN-PT-BT behavior plotted in Figure 1. To construct the model, it is necessary to estimate the parameters

C
q= [Eh7Tca P)S’rla c, b7 gvpa Q]T

through a least squares fit to the data. To designate a least squares functional, we let {Ek, lgk}, k=1,...,Ng,
denote the combined data collected at four temperatures, 263, 278, 293, and 313, and define parameter-dependent
solutions to (13) by P(E%,T;q). The least squares functional

Na
J(q) =Y _|P(Bx, T;q) — Pil?
k=1

was then minimized using the Matlab simplex algorithm fmins.m to obtain the parameter values T, = 330.8 K,
Ej, = 7.5 x 10> Mv/m, b = 2.1 x 10!, P;n = 6.0275 (C/m?)(MVm/C), % =107 C/MVm, ¢ = 0.16, p = 1.4,
and ¢ = 0.85.

The resulting model fit is compared with the quasistatic (collected at 1 Hz) PMN-PT-BT data in Figure 3. It
is observed that the model accurately characterizes the diminishing hysteresis and saturation polarization values
measured in the material as temperatures are increased within the diffuse transition region. Hence it provides
an initial framework quantifying temperature-dependent relaxor ferroelectric behavior of transducer design and
model-based control implementation.
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Figure 3: PMN-PT-BT data (— — —) and homogenized free energy model (——). Abscissas: electric field (MV/m),
ordinates: polarization (C/m?).



5. Concluding Remarks

The model developed here extends the framework in [17] to incorporate temperature-dependent hysteresis and
nonlinear constitutive behavior inherent to relaxor ferroelectric compounds. Specifically, it employs asymptotic
properties of an underlying mesoscopic kernel constructed using mean field theory to incorporate mechanisms
which provide the decrease in hysteresis and saturation polarization measured in relaxors as temperatures are
increased within the diffuse transition region.

The underlying framework provides a number of properties which make it advantageous for material char-
acterization, transducer design, and model-based control design. As detailed in [17], the framework provides
reversibility and guarantees closure of biased minor loops. It also provides an energy basis for certain extended
Preisach models [15] and establishes a unified framework for characterizing hysteresis and constitutive nonlinear-
ities in ferroelectric, ferromagnetic and ferroelastic materials. Finally, the fact that it can be efficiently inverted
provides the capability for constructing inverse filters for linear feedback or feedforward control designs [7, 8, 11].
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