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Abstract

The use of finite element or finite difference techniques to discretize nonlinear smart material system models
can yield full-order numerical models that accurately characterize the system dynamics but do so at significant
computational cost. This can preclude the use of these full-order models for uncertainty analysis, sensitivity
analysis, system design, or real-time control implementation. In this paper, we discuss the contruction of
reduced-order system models using proper orthogonal decompositions (POD) with updates. Through the use of
snapshots constructed from the full-order models, fundamental physics is retained while significantly improving
efficiency for high-speed implementation.
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1. Introduction
Proper Orthogonal Decomposition (POD), also known as the Karhunen-Loeve procedure, is a basis reduction

method that is quite popular among those seeking to implement real-time control on smart material structures
(see [1] and the references therein). To implement the POD method, a sufficient amount of solution data for the
given smart material system is needed. This data can either be collected experimentally or obtained through
high fidelity numerical simulations. Solution data for the system is collected or simulated at several times,
and the solution data at a given time is referred to as a snapshot. The POD method extracts characteristic
information from the snapshots through an orthogonalization process. Because the basis elements are generated
using either high fidelity simulations or actual data from the system, the POD method is able to represent
systems very accurately with very few basis elements. This is a large advantage for the POD method over other
numerical methods.

A difficulty that arrises when trying to implement the POD method regards the manner one chooses to
collect the set of snapshots. Using more snapshots than is necessary can lead to redundancy in information and
makes the basis larger than is necessary. Not having enough snapshots can lead to gaps in the information about
the system and lead to a reduction in accuracy. Generating an effective set of snapshots is an imprecise science
and requires great care. It is possible to supplement a set of snapshots as more data becomes available, as is
detailed in [7] and [9] . When new data becomes available (i.e., a new snapshot), the oldest snapshot is replaced
with the new snapshot and the POD basis is recalculated. This way it is possible to add new information
without greatly increasing the cost of computation of the solution.

To illustrate this process, we consider a flat, rectangular beam with one fixed end that has symmetric PZT
patches attached to either side. We assume that the thickness of the beam is small relative to the length, and
the beam vibrations occur transversely therefore we can use the Euler-Bernoulli beam model. Because of the
discontinuities at the ends of the patches, we must consider the weak formulation of the beam model. We can
employ a cubic spline basis to find an approximation to the solution of the system. This method of finding an
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approximate solution to this model is shown to be accurate in [2]. Using the solution obtained with the spline
basis as the solution data, we can compute a POD solution and compare the results to the full-order solution.

2. Beam Model
In this section, we describe the beam model and how to obtain the full-order approximation to the solution.

For a complete derivation see [8] . We consider a flat, rectangular beam with a fixed end that has symmetric
PZT patches attached on either side (see Figure 1). Let the fixed end of the beam be at x = 0 and the free end
at x = `. To differentiate between the beam and the patch dimensions, we use a subscript b for the beam and
p for the patch. Let w(t, x) denote the transverse displacement and f(t, x) the distributed out-of-plane force.
Also let ρ, Y , and c denote the effective linear density, Young’s modulus, and Kelvin-Voigt damping coefficients.
The PZT patches are located on the region [x1, x2] and the width of both the beam and the patch is b.

As in [8], balancing forces and moments yields

ρ
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∂t2
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∂w

∂t
− ∂2M

∂x2
= f (1)

where M denotes the total moment and γ is a proportionality constant relating viscous air damping and the
transverse velocity. Here, the linear density function ρ is given by ρ(x) = hbbρb + 2χpehpbρp where

χpe(x) =
{

1 x ∈ [x1, x2]
0 x /∈ [x1, x2].

Because of the discontinuity at the patch ends, we need with the weak formulation of (1). As derived in [8], the
weak formulation of the beam model is
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where Y I is a stiffness parameter, cI is an internal damping parameter, and kp is an external coupling parameter,
are all piecewise constants. The φ’s are test functions in the space H2

0 (0, l) = {φ ∈ H2(0, l)|φ(0) = φ′(0) = 0}.

2.1 Full-Order Solution Approximation
As in [8], we want to find an approximate solution using cubic B-splines. We will use this approximation as

the full-order solution. To do this we partition the length of the beam, h = l
N and xj = jh where j = 0, · · · , N .

For j = −1, 0, · · · , N,N + 1, cubic B-splines are defined

φ̂j(x) =
1
h3


(x− xj−2)3, x ∈ [xj−2, xj−1)
h3 + 3h2(x− xj−1) + 3h(x− xj−1)2 − 3(x− xj−1)3, x ∈ [xj−1, xj)
h3 + 3h2(xj+1 − x) + 3h(xj+1 − x)2 − 3(xj+1 − x)3, x ∈ [xj , xj+1)
(xj+2 − x)3, x ∈ [xj+1, xj+2)
0, x /∈ [xj−2, xj+2).

Figure 1: Cantilever beam with PZT patches.



To satisfy the initial conditions w(t, 0) = ∂w
∂x (t, 0) = 0, and for φ to be in H2

0 (which requires φ(0) = φ′(0) = 0),
the basis functions are defined to be

φj(x) =
{
φ̂0(x)− 2 ˆφ−1(x)− 2φ̂1(x) j = 1
φ̂j(x) otherwise.

Approximate solutions of the model are of the form wN (t, x) =
∑N+1
j=1 wj(t)φj(x). Plugging into (2) and

letting the basis functions operate as the test functions yields the system

Mẅ + Qẅ + Kw = f + V (t)b (3)

where w(t) = [w1(t), . . . , wN+1(t)]T . Here M, Q, and K are the mass, damping, and stiffness matrices and they
are defined by

[M]ij =
∫ `

0

ρφiφjdx

[Q]ij =
∫ `

0

[γφiφj + cIφ′′i φ
′′
j ]dx

[K]ij =
∫ `

0

Y Iφ′′i φ
′′
j dx.

The force vectors f and b are defined as

[fi] =
∫ `

0

fφidx

[bi] =
∫ `

0

φ′′i dx.

The second order system (3) can easily be converted into the first order system (see [8]) and then, using an
ODE solver, we can generate the approximate solution. This discretized beam model is verified experimentally
in [2].

3. Proper Orthogonal Decomposition
Here we discuss reducing the size of the basis used for the simulation using Proper Orthogonal Decomposition

(POD). For more detailed information see [1]. To implement the POD method, a large data set must be obtained
through collection of data or through high fidelity simulation techniques. The POD method then converts that
data into an optimal orthonormal set of Np POD modes Φi, i = 1, . . . , Np. Here Np is much smaller than N ,
the number of basis elements used in the high fidelity solution.

To construct the POD basis, we generate a set of Ns snapshots (wN (ti, x), i = 1, . . . , Ns) from the collected
data. Each of the POD modes is a linear combination of the snapshots

Φi(x) =
Ns∑
j=1

αijw
N (tj , x). (4)

To ensure that the basis elements resemble the data, we require the basis elements Φi(x) to maximize

1
Ns

Ns∑
j=1

|〈wN (tj , ·),Φi(·)〉| (5)



subject to 〈Φi,Φi〉 = ‖Φi‖2 = 1. This also ensures that the first POD element resembles the data the most,
followed by the second and so on. To find the POD coefficients (αij ’s), we need to construct the covariance
matrix (L) of the snapshots

[L]k,m =
1
Ns
〈wN (tk, ·), wN (tm, ·)〉, k,m = 1, . . . , Ns. (6)

We then find the eigenvalues and eigenvectors of L and we order the eigenvalues from largest to smallest,
λ1 ≥ . . . ≥ λns

. The coefficient αij corresponds to the jth entry of the ith eigenvector. The basis is minimized

by finding the smallest Np such that
∑Np

i=1
λi∑Ns

i=1
λi

' 1. Once Np and the αij ’s are computed, the reduced-order basis

vectors (Φi’s) can be constructed.

3.1 Computing the POD basis for the Beam Equation
To construct the POD basis, we collect or simulate the Ns snapshots Φi. Here we use a spline basis for the

full-order simulation. The snapshots are of the form {wN (tj , x) =
∑N
i=1 wi(t)φi(x)}Ns

j=1 where the φi’s are the
spline basis functions and the wi’s are the spline coefficients. The covariance matrix L is defined as

[L]k,m =
1
Ns
〈wN (tk, ·), wN (tm, ·)〉 =

1
Ns

∫ l

0

wN (tk, x)wN (tm, x)dx

=
1
Ns

∫ l

0

N∑
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wi(tk)φi(x)
N∑
j=1

wj(tm)φj(x)dx

=
1
Ns

N∑
i=1

N∑
j=1

wi(tk)wj(tm)
∫ l

0

φi(x)φj(x)dx.

From the spline basis for the simulation, we already have theN×N matrix that approximates
∫ l
0
φi(x)φj(x)dx,

as well as the coefficients wi’s. Each element of L is constructed with a vector-matrix-vector multiplication (i.e.,
L is constructed with simple matrix multiplication using existing matrices from the full-order approximation).
The eigenvalues and eigenvectors of L are ordered from largest to smallest λ1 ≥ . . . ≥ λns

. After finding the
ordered eigenvalues and eigenvectors, we can find Np, the αij ’s, and build the POD basis functions (Φ′s).

Once we have constructed the POD basis functions, we build the system matrices M, K, and C. The
matrices for the reduced-order system are constructed with the matrices from the full-order simulation. We will
refer to the full-order system matrices as Mfull, Kfull, and Cfull. The mass matrix M is defined as

[M]ij =
∫ l

0

ρΦiΦjdx

=
∫ l

0

ρ
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∫ l

0

wN (tk1 , x)wN (tk2 , x)dx

= ρ

Ns∑
k1=1

Ns∑
k2=1

αik1α
j
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∫ l

0

N∑
m1=1

wm1(tk1)φm1(x)
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= ρ
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∫ l

0
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We build the reduced-order mass matrix using the full-order mass matrix, the spline coefficients, and the POD
coefficients. The POD mass matrix M is constructed with matrix multiplication [M] = [αij ][wi(t)][Mfull][wi(t)]T [αij ]

T .



The damping and stiffness matrices as well as the force vectors for the reduced-order system are obtained in
the same manner. The POD method has been used with the beam model to experimentally implement control
designs as detailed in [5, 6].

4. POD with Updates
Here we discuss a method to update the POD basis as more snapshots become available. We will do this in

the same manner as presented in [7, 9]. To use POD, a set of snapshots is required. It is difficult to ensure that
all possible behaviors (modes) are captured in the initial set of snapshots. The POD basis that is generated
only takes the information quantified in the set of snapshots into account. Hence the POD basis will only be as
good as the snapshots used to create it. When new information becomes available, we would like to add that
new information to the information that has already been collected and try to fine tune the POD basis.

When a new snapshot becomes available, we need to decide how to include the new information with the old.
Just adding the new snapshot to the rest of the snapshots will increases the size of the covariance matrix. This
requires solving another even larger eigenvalue-eigenvector problem which can be expensive and slow. In the
case that solving the eigenvalue-eigenvector is too expensive to solve several times, we employ an algorithm from
[7, 9] that doesn’t require the solution of an eigenvalue-eigenvector problem, but still allows new information to
be added as it becomes available.

When we initially compute a POD basis, we find a group of Np dominant eigenvalues and corresponding
eigenvectors of the covariance matrix L. Letting P̄ be the subspace of dominant eigenvectors of L, an orthonor-
mal basis for P̄ is V = [v1, · · · , vNp] where the vi’s are the eigenvectors corresponding to the ordered eigenvalues
λ1, · · · , λNp. We refer to the subspace containing the eigenvectors corresponding to the non-dominant eigenval-
ues as Q̄. The projectors P and Q onto the subspaces P̄ and Q̄ are

P = VVT,Q = I−VVT. (7)

Here I denotes the Ns×Ns identity matrix.
When a new snapshot becomes available, the oldest snapshot is replaced with the update. As a new snapshot

is obtained, there are three possible ways that the dominant subspace P̄ can change. Another eigenvalue can
become dominant and the dimension of P̄ can increase, an eigenvalue can go from the dominant subspace to
the non-dominant subspace and the dimension of P̄ can decrease, or the dimension of P̄ can remain the same.
In all cases, V needs to be updated. Even if the dimension of P̄ remains the same, V needs to account for the
new snapshot.

The dimension of P̄ increases when adding the new snapshot drives the eigenvalue corresponding to λNp+1

into the dominant subspace. We assume that only one eigenvalue can become dominant during each step. Define
the matrix cq = QLQ. The power iteration

q(v+1) = (cq)vq(0) (8)

produces iterates that asymptotically lie in the dominant eigenspace of cq.
To decide if the dimension of P̄ should be decreased, we define the Np × Np matrix H = VTLV. The

eigenvalues of H are a subset of the eigenvalues of the covariance matrix L. Note here that while we need to
compute the eigenvalues of H, Np << N so this computation shouldn’t be very expensive. If N̂ eigenvalues of H
are dominant, where N̂ < Np, then span(VW) is a good approximation to the dominant eigenspace of L. Here
W is the basis for the dominant eigenspace of H. To reduce the basis we use Gram-Schmidt orthonormalization
of VW. After each step, regardless of how the subspaces change, in order to maintain the accuracy of the basis,
we use Gram-Schmidt orthonormalization on LV.



5. Numerical Results
Once the POD modes and the matrices and vectors in (3) have been generated, we use the trapezoidal

method with 1000 time steps to find the approximate solution to the system using both the full and reduced-
order approximation. In Figure 2, we illustrate the solutions for both methods for 0 ≤ t ≤ 2.5 at x = 3·`

5 . Here,

the full-order system has 17 modes and the POD system has 1 mode. To pick Np, we require
∑Np

i=1
λi∑Ns

i=1
λi

≥ 1−10−8.

For the POD solution we use 6 snapshots distributed equally in the time interval. The norm of the difference
between the two solutions is ‖ · ‖2 = 7.5 × 10−6. The full-order solution takes .208 seconds to compute while
the POD solution takes .030 seconds. Here the forcing function f , is a given by the curve f(t) = sin(10πt).

Now let the forcing function

f(t) =



0 t ∈ [0, .1]
10
3 (t− 0.1) t ∈ (0.1, 0.4]

1 t ∈ (0.4, 0.5]
sin(10πt) + 1 t ∈ (0.5, 2]
1 t ∈ (2, 2.1]
10
3 (2.4− t) t ∈ (2.1, 2.4]

0 t ∈ (2.4, 2.5]

(9)

be the function shown in Figure 3. Because f is piecewise defined, we need to consider the times where the
snapshots are collected. It is possible to miss one segment of the forcing function completely with the snapshots.
If we don’t have a snapshot in the time segment where the forcing function behaves a certain way, it is possible
that the POD modes won’t show the change in behavior that the beam exhibits from the change in the force.

As we did for the example with the sinusoidal forcing function, we use 6 snapshots distributed equally

throughout the time interval and let
∑Np

i=1
λi∑Ns

i=1
λi

≥ 1 − 10−8 which yields Np = 1. Comparing the full-order and

POD solution for the system with the piecewise forcing function yields a norm of ‖ · ‖2 = 9.7 × 10−6. The
times where we collect the snapshots relative to the behavior of the forcing function is shown in Figure 3. Now
we will keep everything the same, but we add 2 updates during the process. Updating at the times t = 0.405
and t = 2.105, as shown in Figure 3, reduces the differences between the full and reduced-order solutions to
‖ · ‖2 = 9.5× 10−6. Here Np does not change after either of the updates. The full and reduced-order solutions
are both shown in Figure 4.
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Figure 2: Comparison between the full and reduced-order solutions of (3).
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Figure 3: Piecewise forcing function f(t) given by (9) (∗-times where snapshots are recorded in full-order
solution, o-update times).
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Figure 4: Full and reduced-order solutions of (3) computed using updates to POD.

6. Concluding Remarks
A method for adding updates to the POD basis for the beam model is discussed. We see that even for a

simple example, updating with new snapshots can improve the accuracy of the simulation. Updating snapshots
in a thoughtful way will be very important in future research in real time control of smart material systems.
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