OBJECTIVE
To design lightweight, resilient, inexpensive and recyclable electroactive polymers as replacements for traditional metal/ceramic-based, mechanical (hydraulic and pneumatic) actuators.

PROBLEM
Existing high-performance electroactive polymers, classified as dielectric elastomers, derive from cross-linked homopolymers, which afford little versatility in terms of property development.

SOLUTION
Network-forming triblock copolymers selectively swollen with a low-volatility solvent constitute a new and broad platform for the rational design of highly tunable dielectric elastomers.

IMPACT
Commercial triblock copolymer thermoplastic elastomers possess excellent (electro)mechanical properties, including shape memory, that can easily extend to other technologies.

Background

Classes of EAPs

- Dielectric elastomers possess natural muscle-like mechanical properties
- Dielectric polymers - high electric field for action
- Piezoelectric materials - very low actuation strain

Limitations

- Compliant electrodes cause transverse squeezing of elastomer due to Maxwell stress
- Interactions due to volume exclusion

Electroactive response

- Extent of electroactuation and dielectric breakdown are composition-tunable.
- Copolymer-based dielectric elastomers outperform conventional materials and resemble the behavior of jellyfish.

Electromechanical characterization

- Stress-strain curves from electroactuation resemble those from mechanical compression.
- The electromechanical modulus (Y_e) is introduced as a new property metric.

Morphology of biaxially stretched films

- X-rays scattered by PS endblocks giving shape, size and arrangement of PS domains
- Scattered image is Fourier transform of real structure

Conclusions

- Dielectric elastomers derived from selectively solvated triblock copolymers exhibit high actuation strains at relatively low fields, and are extremely versatile.
- Actuation can be more systematically characterized by the electromechanical modulus.
- Micelles remain intact but interact differently when the solvated copolymer networks are bi-axially strained.
- Mechanical properties can be effectively mediated by co-solvency.

Acknowledgement

- Financial support from Eaton Corp. and the U.S. Department of Energy
- Drs. Saadh Khan and John van Zanten (NC State)
- Drs. Byung-Ju Lee and Svenke Keller (Argonne National Laboratory)