Catalytic Biomass Pyrolysis Studies at Pilot-Scale

TCS2016, November 1-4, 2016, Chapel Hill, NC

Ofei Mante, D. Dayton, D. Barbee, M. Carpenter, L. Shumaker, K. Wang, and J. Peters
Objective: Demonstrate an advanced biofuels technology that integrates a catalytic biomass pyrolysis step and a hydroprocessing step to produce infrastructure compatible biofuels.

Technical goals are to:
1) optimize the catalytic biomass pyrolysis process (1 tonne/day) to achieve high degree of deoxygenation, while maximizing the bio-crude production
2) improve bio-crude thermal stability
3) evaluate the impact of bio-crude quality in the hydroprocessing step
4) minimize hydrogen demand of the integrated process
5) maximize biofuels yields.

Feedstocks
- Loblolly Pine
- Hybrid Poplar
- Corn Stover
- Switchgrass

Catalytic Biomass Pyrolysis
- Proof of Concept (1" dia fluidized bed)
 - RTI (ARPA-E)
- Bench-scale (1 TPD)
 - RTI (BETO)

Hydroprocessing
- Proof of Concept (1-L upgrading)
 - P66 (ARPA-E)
- Bench-scale (350-mL integrated)
 - Haldor Topsøe (BETO)

Advanced Biofuels
- Gasoline, Diesel, Jet Fuel
Increasing biocrude yield while decreasing oxygen content is a major challenge.
Objective:
- Demonstrate steady-state operation for at least 12 consecutive hours to evaluate process conditions on biocrude yield and quality.

Feedstocks:

<table>
<thead>
<tr>
<th>Biomass</th>
<th>Particle Size</th>
<th>Moisture wt%</th>
<th>Elemental composition (as-received), wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon</td>
</tr>
<tr>
<td>Loblolly pine</td>
<td>2 mm top size</td>
<td>15.0</td>
<td>47.4</td>
</tr>
<tr>
<td>Red Oak</td>
<td>< 2 mm</td>
<td>10.0</td>
<td>45.5</td>
</tr>
</tbody>
</table>

Catalyst:
- Non-zeolite alumina based catalyst with nominal 70 μm particle size

CFP Conditions:
- Biomass Feed Rate: 35-70 kg/h
- Pyrolysis Temperature: 425-600 °C
- Regenerator Temperature: 560 - 640 °C
- Mixing Zone N₂ flowrate: 75 – 550 scfh
- Mixing Zone Residence time: 0.5 – 2 s
RTI’s 1TPD Catalytic Biomass Pyrolysis Unit

Front View

- Biomass Hopper
- Biomass Conveyer Screw
- Regenerator
- Reactor
- Biomass Feeder
- Controls Cabinet
CFP Process:

Start-up Procedure:
- Electric heating to 350 °C
- Increase gas flows to initiate solids circulation
- Diesel injection in regenerator to reach desired mixing zone temperature
- Discontinue diesel injection and commence biomass feeding
- Feed biomass continuously for 12 hours
- Stop biomass feeding and shutdown

Analysis:
- CFP product gases and regenerator off gases are analyzed online by micro-GCs
- Liquids and solids are routinely sampled to determine mass and carbon balances.
- Characterization of liquid samples
 - Moisture, Density, Viscosity
 - CHNOS
 - GC-MS
 - 13C-NMR
<table>
<thead>
<tr>
<th>Run Code</th>
<th>Biomass feed rate (kg/h)</th>
<th>Mixing zone Temp. (°C)</th>
<th>Riser Temp. (°C)</th>
<th>Mixing zone N₂ flow rate (scfh)</th>
<th>Mixing zone residence time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13703-37</td>
<td>45.6</td>
<td>424.3</td>
<td>421.7</td>
<td>340</td>
<td>1.38</td>
</tr>
<tr>
<td>13703-50</td>
<td>35.5</td>
<td>527.6</td>
<td>520.4</td>
<td>290</td>
<td>1.41</td>
</tr>
<tr>
<td>13703-52</td>
<td>50.9</td>
<td>576.0</td>
<td>583.5</td>
<td>513</td>
<td>0.75</td>
</tr>
<tr>
<td>13703-56</td>
<td>54.6</td>
<td>464.6</td>
<td>491.1</td>
<td>445</td>
<td>1.00</td>
</tr>
<tr>
<td>13703-70</td>
<td>54.5</td>
<td>494.1</td>
<td>490.8</td>
<td>544</td>
<td>0.79</td>
</tr>
<tr>
<td>13703-78</td>
<td>44.1</td>
<td>432.6</td>
<td>424.7</td>
<td>546</td>
<td>0.85</td>
</tr>
<tr>
<td>13703-86</td>
<td>54.7</td>
<td>460.7</td>
<td>455.1</td>
<td>531</td>
<td>0.84</td>
</tr>
<tr>
<td>13703-96</td>
<td>35.8</td>
<td>519.7</td>
<td>494.3</td>
<td>495</td>
<td>0.84</td>
</tr>
<tr>
<td>13703-98</td>
<td>64.2</td>
<td>521.0</td>
<td>495.3</td>
<td>75</td>
<td>5.49</td>
</tr>
<tr>
<td>13703-102</td>
<td>66.7</td>
<td>514.2</td>
<td>493.7</td>
<td>468</td>
<td>0.89</td>
</tr>
<tr>
<td>13703-106</td>
<td>38.9</td>
<td>489.3</td>
<td>478.1</td>
<td>231</td>
<td>1.86</td>
</tr>
</tbody>
</table>
Pilot Plant Operation - Reactor Temperature Profile

Temperature, °C

Time on stream (hours)
Steady-state (6-10 h) yields of biocrude for CFP of loblolly pine using alumina catalyst at 425 °C was around 40-45 gal/ton.

Steady-state yields of biocrude for CFP of loblolly pine using alumina catalyst at 465 °C was around 50 gal/ton.
Results - Biocrude Composition

Peak Area, %

CFP Temperature, °C

- 425 °C
- 465 °C
- 485 °C
- 520 °C
- 575 °C

Other
Aliphatic
Furans
Acids
Phenol, mono
Phenol, multi
Carbonyls, mono
Mono-Aromatic
Sugar
Carbonyls, multi
PAH
Results - Biocrude Physico-Chemical Properties

<table>
<thead>
<tr>
<th>CFP liquid products*</th>
<th>Density, g/cm³</th>
<th>Kinematic viscosity, cSt</th>
<th>Carbon, wt%</th>
<th>Hydrogen, wt%</th>
<th>Nitrogen, wt%</th>
<th>Oxygen, wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-biocrude</td>
<td>1.018</td>
<td>4.1</td>
<td>80.3</td>
<td>8.1</td>
<td>0.077</td>
<td>11.5</td>
</tr>
<tr>
<td>Heavy-biocrude</td>
<td>1.162</td>
<td>154</td>
<td>70.9</td>
<td>6.6</td>
<td>0.108</td>
<td>22.4</td>
</tr>
</tbody>
</table>

* From CFP of loblolly pine at 520 °C

Carbon distribution

Distillation Temperature (°C)

- Light Biocrude
- Heavy Biocrude

Weight %

- Gas Oil
- Middle Distillate
- Naphtha
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>424</td>
<td>528</td>
<td>576</td>
<td>465</td>
<td>494</td>
<td>433</td>
<td>461</td>
<td>520</td>
<td>521</td>
<td>514</td>
<td>489</td>
</tr>
<tr>
<td>Bio-oil (Organic), %</td>
<td>10.3</td>
<td>10.4</td>
<td>7.4</td>
<td>17.9</td>
<td>14.1</td>
<td>17.4</td>
<td>6.7</td>
<td>-</td>
<td>5.8</td>
<td>7.2</td>
<td>13.9</td>
</tr>
<tr>
<td>Bio-oil (Aqueous), %</td>
<td>17.2</td>
<td>12.9</td>
<td>9.3</td>
<td>23.1</td>
<td>13.3</td>
<td>9.9</td>
<td>10.2</td>
<td>15.3</td>
<td>19.8</td>
<td>14.6</td>
<td>10.1</td>
</tr>
<tr>
<td>Total Liquid, %</td>
<td>27.5</td>
<td>23.3</td>
<td>16.7</td>
<td>41</td>
<td>27.4</td>
<td>27.3</td>
<td>16.9</td>
<td>15.3</td>
<td>25.6</td>
<td>21.8</td>
<td>24</td>
</tr>
<tr>
<td>Pyrolysis Gas, %</td>
<td>6.7</td>
<td>21.8</td>
<td>13.8</td>
<td>7.8</td>
<td>7.3</td>
<td>4.6</td>
<td>3.7</td>
<td>9.8</td>
<td>10.9</td>
<td>9.4</td>
<td>10.7</td>
</tr>
<tr>
<td>Solid/Regen Gas, %</td>
<td>48.8</td>
<td>52.3</td>
<td>32.0</td>
<td>51.5</td>
<td>47.9</td>
<td>56.0</td>
<td>55.5</td>
<td>70.2</td>
<td>47.8</td>
<td>49.5</td>
<td>32.9</td>
</tr>
<tr>
<td>Carbon Balance</td>
<td>82.9</td>
<td>97.4</td>
<td>62.6</td>
<td>100.3</td>
<td>82.6</td>
<td>87.9</td>
<td>76.0</td>
<td>80.0</td>
<td>84.3</td>
<td>80.7</td>
<td>67.6</td>
</tr>
</tbody>
</table>
Results - Parametric Effects (Alumina, loblolly pine)

Main Effects Plot for Organic Yield

- Mixing Zone Temperature, °C
- Mixing zone residence time, s
- Dry biomass feedrate, kg/h

Carbon, %

<table>
<thead>
<tr>
<th>Mixing Zone Temperature, °C</th>
<th>Mixing zone residence time, s</th>
<th>Dry biomass feedrate, kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>424.3</td>
<td>0.8</td>
<td>35.5</td>
</tr>
<tr>
<td>422.6</td>
<td>0.8</td>
<td>38.9</td>
</tr>
<tr>
<td>464.6</td>
<td>0.8</td>
<td>44.1</td>
</tr>
<tr>
<td>489.3</td>
<td>1.0</td>
<td>45.6</td>
</tr>
<tr>
<td>494.1</td>
<td>1.4</td>
<td>50.9</td>
</tr>
<tr>
<td>527.6</td>
<td>1.4</td>
<td>54.5</td>
</tr>
<tr>
<td>576.0</td>
<td>1.9</td>
<td>54.6</td>
</tr>
</tbody>
</table>
Main Effects Plot for Total liquid yield

- Mixing Zone Temperature, °C
- Mixing zone residence time, s
- Dry biomass feedrate, kg/h

Carbon, %
Results - Parametric Effects (Alumina, loblolly pine)
Results - Yields Summary

- Bio-crude (organic) Yield, wt%
- Oxygen content (wt% of bo-crude)

- Bench-scale published data
- RTI Bench-Scale Data
- RTI Pilot-Plant Data

- Target
Summary

- Catalytic biomass pyrolysis in a 1”-dia fluidized bed reactor
- 20 wt% oxygen content with 42% energy recovery
- 1 TPD unit operational for more than Three years
 - 4 catalysts tested; 5 feedstocks – loblolly pine, hybrid poplar, corn stover, hardwood pellets, red oak
 - 12 h Parametric Studies
 - Temperature was the most influential factor.
 - Short residence times reduced biomass devolatilization.
 - Moderate temperatures (450 \(\leq T < 500\) \(^{\circ}\)C) favored higher yields.
 - Anhydrosugars are cracked at higher temperature > 500 °C, and formation of simple phenols, catechols, and PAH increases.
 - Steady-state yield analysis varied between 38 and 50 gallons/dry ton of biomass.
 - Extended Operations
 - Completed 30 and 20 hours of steady-state operation.
 - Over 200-gal of loblolly pine bio-crude produced for upgrading.
- Preliminary techno-economic analysis complete
 - See other presentations by Dr. Sylvain Verdier in Session 2.2:Pyrolysis and Dr. Ofei Mante in Session 3.2: Upgrading
Acknowledgements

Kim Knudsen
Glen Hytoft
Jostein Gabrielsen
Sylvain Verdier
Nadia Luciw Ammitzbøll

David D. Dayton
John Carpenter
Kaige Wang
Jonathan Peters
David Barbee
Kelly Amato
Michael Carpenter