Standardization of Analytical Techniques for Pyrolysis Bio-oil

Jack Ferrell, Earl Christensen, Mariefel Olarte, Asanga Padmaperuma, Raynella Connatser

November 2nd, 2016
Grand Challenge: Complex Functionality of Biomass

Biomass

Cellulose

Hemicellulose

Lignin

Pathways

Pyrolysis
Gasification

Reactions

Decarbonylation
Decarboxylation
Cracking
Hydrogenation
Hydrogenolysis
Ring Opening
Alkylation
Oligomerization

Fuels

Gasoline

Diesel

Jet Fuel

Multi-functional catalysts are required to convert biomass into fuels
Pyrolysis & Upgrading Pathway

- Path to cost competitive biofuels requires innovation in each process step
- Integration with refinery infrastructure requires quality metrics:
 - Reliable analytics needed

Standard analytical methods needed

- Fast Pyrolysis
- Catalytic Fast Pyrolysis
- Hydrotreating

Biomass → Hydrocarbon Biofuels
Project Overview

• Reliable analytics needed throughout process
 o Standard methods will enable research and the bioenergy industry

• Standardize quantitative analytical methods for bio-oils
 o Standard methods don’t exist that give chemical info
 o **Goal**: adoption of methods by community
 – Methods published\(^1\) as Laboratory Analytical Procedures (LAPs)

• Inter-laboratory validation via Round Robin

• Joint-project with PNNL and ORNL

\(^1\) http://www.nrel.gov/bioenergy/bio-oil-analysis.html
Bio-oil Analysis Challenges

- Acidic liquid (pH ~2.5)
- Contains over 300 compounds
- 20-30 wt% water
- Unstable with time (aging)
- Very high oxygen content (~40 wt%)
 - Oxygen present across variety of functionalities
 - Acids, aldehydes, alcohols, esters, ethers, ketones, phenolics, sugars, furans
 - Oxygenated hydrocarbons of a wide variety of sizes: 40 – 2000 Da
 - Compounds monofunctional (acetic acid) and multifunctional (guaiacol)
History of Standardization

• Five major bio-oil Round Robins
 o 1988 (IEA), 1997 (EU PyNE, IEA),
 2000 (EU PyNE & IEA), 2012 (IEA)

• What worked
 o C,H,N,S (O by difference), Karl-Fischer,
 density, pH, kinematic viscosity,
 insoluble solids content

• What didn’t work
 o Xylene-distillation (water content),
 GC, HPLC, GPC, pyrolytic lignin,
 TAN, stability test based on viscosity

-For use as burner fuel

Chemical characterization techniques: methods that give info on chemical species or functional groups
Overview of Standardization Work

• Round Robin
 o Successful validation of chemical characterization techniques for bio-oil

• Techniques validated:
 o Gas Chromatography / Mass Spectrometry (GC/MS)
 o Carboxylic acid titration (CAN/TAN)
 o Carbonyl titration
 o 31P Nuclear magnetic resonance (NMR)
Bio-oil Sample

- Produced in 2010 at NREL in Pilot Plant\(^1\)
 - Oak, 500 °C
 - Not hot gas filtered
 - Have large quantity
 - Used for method development and validation

- Aging Test
 - 80 °C, 24 hours
 - 2.1% viscosity change
 - Very small change
 - *Oil stabilized during storage*

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (wt%)</td>
<td>44.5</td>
</tr>
<tr>
<td>H (wt%)</td>
<td>6.8</td>
</tr>
<tr>
<td>N (wt%)</td>
<td>0.07</td>
</tr>
<tr>
<td>O (wt%)</td>
<td>48.6</td>
</tr>
<tr>
<td>S (wt%)</td>
<td><0.005</td>
</tr>
<tr>
<td>Water (wt%)</td>
<td>23.1</td>
</tr>
<tr>
<td>Insoluble solids (wt%)</td>
<td>0.84</td>
</tr>
<tr>
<td>K (ppm)</td>
<td>79</td>
</tr>
<tr>
<td>Na (ppm)</td>
<td>127</td>
</tr>
</tbody>
</table>

Current analysis methods do not fully describe the oil quality, nor fully inform downstream processing

\(^1\)Baldwin, RM, Feik, CJ, Energy & Fuels 27 (2013) 3224-3238
GC/MS – Quantification of Volatiles

- Literature survey: variety of columns, dimensions, and instrument parameters
- Mid-polar column gave best results
 - 14% (cyanopropoyl-phenyl)-PDMS
 - 60 m x 250 µm internal diameter, 0.25 µm film thickness
- Over 100 compounds identified
 - 31 calibrated & quantified
 - 22 wt% of sample
- Results highlight importance of using a quantitative method for GC-MS
 - Trends in results based on % peak area not always valid
 - Response factors unique to specific compound on MS detector
- Intra-laboratory variability: < 5% for each compound

<table>
<thead>
<tr>
<th>Tentative ID</th>
<th>% Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levoglucosan</td>
<td>34.0</td>
<td>8.8</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>12.2</td>
<td>4.3</td>
</tr>
<tr>
<td>Acetol</td>
<td>3.4</td>
<td>1.1</td>
</tr>
<tr>
<td>Hydroxyacetaldehyde</td>
<td>3.1</td>
<td>5.0</td>
</tr>
<tr>
<td>Furfural</td>
<td>1.5</td>
<td>0.34</td>
</tr>
<tr>
<td>Catechol</td>
<td>1.4</td>
<td>0.38</td>
</tr>
<tr>
<td>Syringol</td>
<td>1.3</td>
<td>0.14</td>
</tr>
<tr>
<td>3-Methyl-1,2-cyclopentanedione</td>
<td>1.2</td>
<td>0.22</td>
</tr>
<tr>
<td>5-Hydroxymethylfurfural</td>
<td>1.2</td>
<td>0.32</td>
</tr>
<tr>
<td>2(5H)-Furanone</td>
<td>0.8</td>
<td>0.26</td>
</tr>
<tr>
<td>Propanoic acid</td>
<td>0.7</td>
<td>0.39</td>
</tr>
<tr>
<td>4-Ethylguaiacol</td>
<td>0.7</td>
<td>0.04</td>
</tr>
<tr>
<td>Guaiacol</td>
<td>0.7</td>
<td>0.08</td>
</tr>
<tr>
<td>Creosol</td>
<td>0.6</td>
<td>0.07</td>
</tr>
<tr>
<td>2-Cyclopenten-1-one</td>
<td>0.5</td>
<td>0.08</td>
</tr>
</tbody>
</table>
GC/MS Validation

- Sample A = Sample B
- Common (purchased) calibration standards
- 21/31 compounds less than 20% RSD\(^1\)
 - Variabilities seem high, but comparable to other standard methods (EPA 8270D)
- 10/31 > 20%
 - In most cases, high variation due to one lab reporting high/low
 - In most cases, compounds with high variability were present at lower concentrations

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample A average (µg/mL)</th>
<th>Variability A (%RSD)</th>
<th>Sample B average (µg/mL)</th>
<th>Variability B (%RSD)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levoglucosan</td>
<td>83750</td>
<td>15%</td>
<td>81512</td>
<td>12%</td>
<td>Labs 3, 4 and 5 unable to produce linear calibration with R(^2) < 0.99</td>
</tr>
<tr>
<td>Glycolaldehyde</td>
<td>47651</td>
<td>22%</td>
<td>51423</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>44703</td>
<td>23%</td>
<td>47016</td>
<td>14%</td>
<td>Lab 4 Sample A reported value 50% of other labs reporting</td>
</tr>
<tr>
<td>Acetol</td>
<td>12637</td>
<td>17%</td>
<td>12359</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Catechol</td>
<td>4057</td>
<td>38%</td>
<td>3313</td>
<td>51%</td>
<td>Lab 3 < LOQ</td>
</tr>
<tr>
<td>Propanoic acid</td>
<td>3805</td>
<td>14%</td>
<td>3925</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Furfural</td>
<td>3623</td>
<td>15%</td>
<td>3649</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>5-Hydroxymethylfurfural</td>
<td>3239</td>
<td>24%</td>
<td>3217</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>2(5)-Furanone</td>
<td>2519</td>
<td>12%</td>
<td>2498</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-1,2-cyclopentanediene</td>
<td>2036</td>
<td>19%</td>
<td>2098</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Syringol</td>
<td>1471</td>
<td>19%</td>
<td>1438</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Butanoic acid</td>
<td>1375</td>
<td>16%</td>
<td>1439</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Syringaldehyde</td>
<td>1149</td>
<td>13%</td>
<td>1163</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Maltol</td>
<td>758</td>
<td>19%</td>
<td>777</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>2-Cyclopenten-1-one</td>
<td>747</td>
<td>18%</td>
<td>750</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Guaiacol</td>
<td>731</td>
<td>24%</td>
<td>738</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Acetosyringone</td>
<td>721</td>
<td>9%</td>
<td>715</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>5-Methylfurfural</td>
<td>716</td>
<td>19%</td>
<td>719</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Creosol</td>
<td>576</td>
<td>18%</td>
<td>575</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Vanillin</td>
<td>569</td>
<td>15%</td>
<td>572</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-2(5)-furanone</td>
<td>520</td>
<td>32%</td>
<td>522</td>
<td>33%</td>
<td>Lab 5 < LOQ</td>
</tr>
<tr>
<td>Hydroquinone</td>
<td>513</td>
<td>28%</td>
<td>514</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>498</td>
<td>32%</td>
<td>500</td>
<td>33%</td>
<td>Lab 5 < LOQ</td>
</tr>
<tr>
<td>Apocynin</td>
<td>460</td>
<td>14%</td>
<td>460</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>o-Cresol</td>
<td>323</td>
<td>15%</td>
<td>318</td>
<td>15%</td>
<td>Labs 5 < LOQ</td>
</tr>
<tr>
<td>4-Ethylguaiacol</td>
<td>311</td>
<td>12%</td>
<td>315</td>
<td>15%</td>
<td>Labs 1 and 5 < LOQ</td>
</tr>
<tr>
<td>3-Hydroxy-2-butanol</td>
<td>310</td>
<td>19%</td>
<td>315</td>
<td>17%</td>
<td>Labs 1 and 5 < LOQ</td>
</tr>
<tr>
<td>Eugenol</td>
<td>284</td>
<td>17%</td>
<td>284</td>
<td>19%</td>
<td>Lab 5 < LOQ</td>
</tr>
<tr>
<td>2,4-Xylenol</td>
<td>279</td>
<td>29%</td>
<td>278</td>
<td>31%</td>
<td>Lab 5 < LOQ</td>
</tr>
<tr>
<td>p-Cresol</td>
<td>247</td>
<td>25%</td>
<td>247</td>
<td>25%</td>
<td>Labs 1, 4, and 5 < LOQ</td>
</tr>
<tr>
<td>m-Cresol</td>
<td><LOQ</td>
<td>NA</td>
<td><LOQ</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Ferrell et al. *Biofuels, Bioproducts & Biorefining* 10 (2016) 496-507
Carboxylic Acid Titration (CAN/TAN)

- Organic acids and phenolics are abundant in bio-oil
 - Knowledge of acid content vital for upgrading and refinery integration
- Acid content of petroleum commonly measured by titration (ASTM D664) and expressed as total acid number (TAN)
- Modified D664, allowing for increased precision of the carboxylic acid number (CAN), and detection of phenolics at the second endpoint\(^1\)
 - Changed the titrant from KOH to tetrabutyl ammonium hydroxide (TBAOH)
 - Changed pH electrode electrolyte from LiCl to tetraethyl ammonium bromide (TEABr)

- Intra-laboratory results with bio-oil:
 - 1\(^{st}\) endpoint: CAN = 81 ± 1 mg KOH/g
 - 2\(^{nd}\) endpoint: TAN = 187 ± 2 mg KOH/g
 - Phenolic content PhAN = TAN – CAN = 99 ± 1 mg KOH/g

CAN/TAN Validation

CAN numbers reliable

Problems with TAN identification

- Method robust with phenolic model compounds
- Large # of phenolics in bio-oil leads to multiple endpoints for TAN
- Method needs further refinement before TAN numbers can be trusted

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Sample</th>
<th>Lab1</th>
<th>Lab2</th>
<th>Lab3</th>
<th>Lab4</th>
<th>Lab5</th>
<th>Average</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>A</td>
<td>78.8</td>
<td>83.1</td>
<td>81.8</td>
<td>84.4</td>
<td>89.0</td>
<td>83.5</td>
<td>4.5</td>
</tr>
<tr>
<td>TAN</td>
<td>A</td>
<td>184.3</td>
<td>181.0</td>
<td>N/A</td>
<td>181.7</td>
<td>N/A</td>
<td>182.3</td>
<td>1.0</td>
</tr>
<tr>
<td>CAN</td>
<td>B</td>
<td>81.1</td>
<td>82.3</td>
<td>80.3</td>
<td>82.9</td>
<td>90.0</td>
<td>83.3</td>
<td>4.7</td>
</tr>
<tr>
<td>TAN</td>
<td>B</td>
<td>182.2</td>
<td>188.8</td>
<td>N/A</td>
<td>180.9</td>
<td>N/A</td>
<td>184.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Units = mg KOH/g
Carbonyl Titration (Nicolaides method)

- Carbonyls in bio oil:
 - Instability during storage
 - Coke formation during upgrading
 - Aldehydes and ketones
- Quantitative analysis via titration
- Conversion of C=O to oxime
- Titrate the liberated HCl using a base

\[
\begin{align*}
\text{R}_1 \text{C}=\text{O} \text{R}_2 + \text{H}_2\text{NOH} \cdot \text{HCl} & \rightarrow \text{R}_1\text{N}=\text{OH} \cdot \text{R}_2 + \text{HCl} + \text{H}_2\text{O} \\
\end{align*}
\]

Results

3.33 ± 0.11 mmol C=O/g
Carbonyl Titration (Faix method)

- Two methods tested, modified from existing methods in literature
 - Nicolaides: this is the method typically used for bio-oils\(^1\)
 - 12-18 hours of stirring, titration at room temperature
 - Faix: lesser known method\(^2\), developed at NREL for bio-oils
 - 2 hours stirring time, titration at 80 °C

- Results show that the Nicolaides method as-used significantly underestimates carbonyls in bio-oil\(^3\)
 - Results consistent with consistent stirring time

\(^1\) Nicolaides, GM. MAsc Thesis, University of Waterloo, 1984
\(^3\) Black S. and Ferrell J. Energy & Fuels 30 (2016) 1071-1077
Carbonyl Titration Validation

- First time carbonyl titration tested in Round Robin
- In addition to being more accurate and easier to perform, the Faix method is more reliable
 - Carbonyl quantification important (upgrading, stability)
 - Could lead the way to a stability test based on carbonyl titration
 - Commonly-used stability test based on viscosity is not very reliable

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample</th>
<th>Lab1</th>
<th>Lab2</th>
<th>Lab3</th>
<th>Lab4</th>
<th>Lab5</th>
<th>Average</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicolaides</td>
<td>A</td>
<td>3.33</td>
<td>2.70</td>
<td>2.87</td>
<td>2.83</td>
<td>3.41</td>
<td>3.03</td>
<td>10.6</td>
</tr>
<tr>
<td>Faix</td>
<td>A</td>
<td>3.59</td>
<td>3.98</td>
<td>3.84</td>
<td>3.96</td>
<td>N/A</td>
<td>3.84</td>
<td>4.7</td>
</tr>
<tr>
<td>Nicolaides</td>
<td>B</td>
<td>3.35</td>
<td>3.26</td>
<td>2.88</td>
<td>2.79</td>
<td>3.42</td>
<td>3.14</td>
<td>9.1</td>
</tr>
<tr>
<td>Faix</td>
<td>B</td>
<td>3.55</td>
<td>4.06</td>
<td>3.90</td>
<td>4.04</td>
<td>N/A</td>
<td>3.89</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Units = mol C=O/kg
• Importance: hydroxyl groups present in functionalities relevant to stabilization and upgrading of bio-oils
• Can quantitatively determine¹:
 – Phenols
 – Aliphatic alcohol
 – Carboxylic acids

\[
\text{ROH} = \begin{array}{c}
\text{Phenol} \\
\text{Aliphatic alcohol} \\
\text{Carboxylic acid}
\end{array}
\]

\[
\begin{align*}
\text{POCl}_3 + R-\text{OH} + \text{NEt}_3 & \rightarrow \text{PO}^\ominus \text{OR} + [\text{HNEt}_3]\text{Cl} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Functional group</th>
<th>Chemical shift, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic -OH</td>
<td>152 - 145</td>
</tr>
<tr>
<td>Phenolic -OH</td>
<td>138 – 145</td>
</tr>
<tr>
<td>Carboxylic -OH</td>
<td>134.6 - 136</td>
</tr>
</tbody>
</table>

¹ Ben H. and Ferrell J. RSC Advances 6 (2016) 17567-17573
Validation of 31P NMR

<table>
<thead>
<tr>
<th>-OH Group</th>
<th>Sample</th>
<th>Lab1</th>
<th>Lab2</th>
<th>Lab3</th>
<th>Lab4</th>
<th>Lab5</th>
<th>Average</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic</td>
<td>A</td>
<td>4.99</td>
<td>5.40</td>
<td>4.28</td>
<td>5.21</td>
<td>5.07</td>
<td>4.99</td>
<td>8.5</td>
</tr>
<tr>
<td>Phenolic</td>
<td>A</td>
<td>2.39</td>
<td>2.47</td>
<td>2.20</td>
<td>1.91</td>
<td>2.39</td>
<td>2.27</td>
<td>9.9</td>
</tr>
<tr>
<td>Carboxylic</td>
<td>A</td>
<td>1.19</td>
<td>1.22</td>
<td>1.11</td>
<td>1.42</td>
<td>0.99</td>
<td>1.19</td>
<td>13.3</td>
</tr>
<tr>
<td>Aliphatic</td>
<td>B</td>
<td>5.19</td>
<td>5.30</td>
<td>4.97</td>
<td>5.35</td>
<td>5.12</td>
<td>5.19</td>
<td>2.9</td>
</tr>
<tr>
<td>Phenolic</td>
<td>B</td>
<td>2.46</td>
<td>2.49</td>
<td>2.60</td>
<td>2.02</td>
<td>2.46</td>
<td>2.41</td>
<td>9.3</td>
</tr>
<tr>
<td>Carboxylic</td>
<td>B</td>
<td>1.25</td>
<td>1.17</td>
<td>1.30</td>
<td>1.59</td>
<td>0.99</td>
<td>1.26</td>
<td>17.4</td>
</tr>
</tbody>
</table>

Units = mmol OH/g

- First time NMR tested in bio-oil Round Robin
- Aliphatic and phenolic OH groups can be quantified reliably
- Carboxylic OH groups
 - Higher variability: ~15%
 - Present at ~ half the concentration of phenolics
Conclusions

• **Techniques validated:**
 - Gas Chromatography / Mass Spectrometry (GC/MS)
 - 21/31 compounds < 20% variability
 - Carboxylic acid titration (CAN/TAN)
 - CAN very reliable, 5% variability
 - Carbonyl titration
 - Faix method very reliable, 5% variability
 - 31P NMR
 - Aliphatic & Phenolic groups < 10% variability
 - Carboxylic groups ~15% variability

Successful validation of *chemical characterization* techniques for bio-oil
Acknowledgments

NREL
Earl Christensen
Stuart Black
Haoxi Ben
Gina Chupka
Lisa Fouts

PNNL
Mariefel Olarte
Asanga Padmaperuma
Sarah Burton
Teresa Lemmon
Marie Swita
Heather Job
Doug Elliot

Round Robin Partners
Washington State University
- Manuel Garcia-Perez
- Filip Stankovikj

ORNL
- Jim Keiser
- Raynella (Maggie) Connatser
- Samuel Lewis
- Edward Hagaman

VTT Technical Research Centre of Finland
- Ville Paasikallio
- Jaana Korhonen
- Sami Alakurtti
- Pia Willberg-Keyrilainen

Thunen Institute of Wood Research
- Dietrich Meier
- Silke Radtke
- Ingrid Fortmann
- Bernhard Ziegler

Bioenergy Technologies Office, DOE EERE
Questions

Contact info:
Jack.Ferrell@nrel.gov

Analytical Methods:
http://www.nrel.gov/bioenergy/bio-oil-analysis.html

Method validation publication:
Energy & Fuels, Bioproducts & Biorefining 10 (2016) 496-507

Carbonyl titration publication:
RSC Advances 6 (2016) 17567-17573

31P NMR publication:
RSC Advances 6 (2016) 17567-17573