Teaching Teaming, Writing, and Speaking
ASEE Workshop, June 22, 2003
Nashville, TN

Drs. Chris Anson, Lisa Bullard, Steven Peretti
North Carolina State University

Paula Berardinelli, Deanna Dannels, Chris Daubert, Amanda Granrud,
Naomi Kleid, David Kmiec
Workshop Objectives

- Identify issues, choices, and challenges associated with emphasizing teaming, writing, and speaking (TWS) in engineering curricula
- Explore methods and models for integrating TWS into engineering courses
- Facilitate strategic choices and implementation plans
- Share materials and resources based on instructional needs and parameters
Workshop Agenda

12:30 Introduction(s), agenda, context-setting, exploration of issues
1:30 Explanation of TWS models and methods
2:30 Break
2:45 Application of models
3:45 Discussion and questions
4:00 Adjourn
Please form small groups.

Read the case and, playing the role of committee members, read and discuss the emailed response.

Formulate a response to the email’s author.

Assign a spokesperson and be prepared to share your group’s response.
Junior level

Chemical engineering unit operations lab

Course: one hour lecture plus three hour lab

TWS module:
- 4 times/semester during lab off-weeks as a class
- 4 times/semester with TWS consultant as teams
Models and Methods: Lab

- **Focus of in-class activities**
 - Teaming
 - Collaborative writing
 - Collaborative speaking

- **Focus of consultations**
 - Proper citations
 - Report organization
 - Graphics and layout
 - Rehearse oral presentation
Models and Methods: Lab

Preliminary Results

- Statistically significant difference in 3rd and 4th written reports: TWS outperformed non-TWS
- Statistically significant difference in final oral presentation: TWS outperformed non-TWS
Models and Methods: Lab

CHE 330 Average Written Lab Report Grades

- **Report 1**
- **Report 2**
- **Report 3**
- **Report 4**

- **Average Grade**
 - 65
 - 70
 - 75
 - 80
 - 85
 - 90

- **Written Lab Report**

- **TWS**
- **Non-TWS**
CHE 330 Average Oral Lab Report Grades

Presentation 1
Presentation 2

Oral Lab Report

Average Grade

TWS
Non-TWS
Lessons Learned: Lab

- Make an effort up front to get students invested in **writing**. Some students think that "engineers never really have to write in the workplace."
- **Punctuate discussion with real world details and anecdotes.** Students don’t appreciate the role of communication skills in the workplace.
- **Always be prepared to break from the lecture to address questions and concerns.**
- **Team consultations:** Plan a theme but be prepared to digress to respond to students' needs.
Models and Methods: Design

- Senior level
- Chemical engineering design
- Course: one hour lecture plus problem session
- TWS module: two modes
 - 4 times/semester consultation on team basis
 - Weekly, 2 hour instruction/workshop
Models and Methods: Design

- Lecture Mode: in-class activities
 - Teaming: Roles and responsibilities
 - Maximizing Team Productivity and Cohesiveness
 - Identifying Personal Strengths and Weaknesses
 - Peer evaluation
 - Presenting in Multidisciplinary Teams
 - Writing Collaboratively
 - Exploring disciplinary conventions
 - Better Managing the Question and Answer Session
 - Video Critiques
 - Troubleshoot Final Oral Presentations
Models and Methods: Design

- **Lecture advantages**
 - Importance transparent
 - Significant contact time
 - Depth and variety
 - Accountability

- **Lecture disadvantages**
 - Workload
 - Transference
 - Time intensive
 - Inflexibility
Results: Design Lecture

- 23 design teams from Spring ‘02 semester
- 3 groupings:
 - no TWS instruction, CHE students only (NTWS/SD)
 - TWS instruction, CHE students only (TWS/SD)
 - TWS instruction, multidisciplinary teams (TWS/MD)
- 3 progress reports, final report, final presentation
Results: Design Lecture

- No statistically-significant difference in performance between groups on progress reports
- Differences appear for final report - analysis ongoing
- Oral final presentation
 - TWS/SD outperformed TWS/MD and NTWS/SD
 - TWS/MD equivalent to NTWS/SD
Results: Design Lecture

- Intellectual background of group members is a potential confounding variable
 - Average GPA of TWS/MD groups = 3.5; TWS/SD groups = 3.5; NTWS/SD group = 3.3
- Student reflections indicate 4 challenges
 - Integrating multidisciplinary information
 - Managing diverse feedback and audiences
 - Aligning content material with communication task
 - Addressing interpersonal team issues
- Multidisciplinary groups face a larger challenge than single discipline groups
Lessons Learned: Design Lecture

- Treat as practical lab
 - scheduling of joint instructional time generated conflict specific to multidisciplinary teams.

- Combine with individual team consultations
 - Teach the MD teams to address multiple audiences in written and oral communication.
 - Teach teams how to assimilate members with varying degrees of expertise in both technical content and writing and speaking.
Models and Methods: Design

Consultation Mode

- Teamwork
- Collaborative writing
- Written feedback
- Appropriate acknowledgements
- Report structure/organization
- Rehearse oral presentation
- Feedback from oral presentation
Models and Methods: Design

Consultation advantages
- "Teachable moments"
- Student centered
- Deliverables

Consultation disadvantages:
- Time flies
- Perception versus reality
- Norming?
- "Tracking"
Results: Design Consultation

- 23 design teams from Spring ‘03 semester
- 3 groupings:
 - No TWS instruction, (NTWS)
 - TWS instruction, (TWS)
 - Multidisciplinary teams (MD)
 - Single-discipline teams (SD)
- 3 progress reports, final report, mid-semester and final presentations
- GPA equivalence between TWS and NTWS
Results: Design Consultation

- TWS (42) vs NTWS (35)
 - TWS superior on final oral report
- MD (35) vs SD (62)
 - MD superior on final oral and final written reports
- TWS/MD (16) vs NTWS/SD (36)
 - TWS/MD superior on final oral and final written reports
- NTWS/MD (19) vs NTWS/SD (36)
 - NTWS/MD superior on final oral report
Lessons Learned: Design Consultation

- Shape expectations early
- Provide clear and concrete motivation
- Clearly define feedback
- Coordination with consultant critical
- Outcomes/process dynamic heavily favors outcomes
Preliminary Conclusions

- Vertical integration of TWS instruction superior to single-shot instruction (instructional content)
- TWS integration superior to external instruction (anecdotal)
- TWS instruction improves performance at all levels, particularly oral presentations
Break

2:30-2:45
Your turn…

- Form small groups according to institutional types.
- Identify which, if any, of the models presented are most useful or appropriate to implement on your campus, based on your general objectives.
- With your group members, work through the implementation issues identified on the handout.
- Now collectively identify and try to solve both general challenges and those unique to your own situation.
- Selected participants will report on their discussions.
Resources

- **www.che.ncsu.edu/action agenda**
 - Contains all of the information from this workshop, and complete set of project information from this 3 yr effort

- **www.ncsu.edu/labwrite/**
 - Contains extensive instructional materials that help students understand the genre of the lab report and guide them in the process of writing effective reports.

- **www2.chass.ncsu.edu/CWSP/fac_seminar/sem_archives.html**
 - Archives of how faculty have incorporated writing and speaking in various courses, including engineering.
Resources

- **www.engl.iastate.edu/ISUComm/s2proceedings/ISUComm2.html**
 - A communication across the curriculum program at Iowa State; started in Agriculture and is spreading out to the entire university

- **www.udel.edu/pbl/**
 - Extensive problem-based learning site (not directly TWS but problem-based learning always implies TWS skills)

- **www.engrng.pitt.edu/~ec2000/ec2000_project_description.html**
 - Assessment methods for a variety of learning outcomes associated with EC 2000.

- **www.chemistrycoach.com/linkstoa.htm#Links%20to%20a%20Better%20Education**
 - A collection of links to handouts for students on writing in general and scientific writing, writing lab reports, time management, speaking, and working in groups.
Good luck!