Effects of Post Pellet Liquid Fat Application (PPLA) Accuracy on Broiler Performance

C. Chewning, C.R. Stark, and J. Brake

Department of Poultry Science
College of Agriculture and Life Sciences
North Carolina State University
Raleigh, NC 27695-7608
Feed Mill Challenges

- Energy is an expensive nutrient.
 - Over application of fat results in inventory loss ("shrink") in the mill.
 - Under application of fat results in inventory gain.
Feed Mill Challenges

• Feed mill managers typically spend more time and money monitoring the level of fat in feed than any for other ingredient.

• Variation in the amount of applied fat of individual feed samples will typically be in the range of 80 - 120% of theoretical.

• Satisfactory variation is 90 – 110% of theoretical.
Factors that Contribute to Fat Variation in Finished Feed

- Ingredient matrix values
- Types of PPLA equipment
- Application rates
- Sampling
- Quantity of pellet fines
- Analytical method
- Feed processing rates
Post Pellet Liquid Application (PPLA)

• Ingredients typically applied by PPLA include:
 • Liquid Enzymes
 • Fat
 • Molasses
 • Vitamins
 • Trace Minerals
 • Medicated Feed Additives
PPLA

Continuous process that involves complex equipment:

- Dry Flow System for Feed
 - Volumetric Feeder
 - Gravimetric Feeder
 - Mass Flow Feeder
- Liquid Flow System for Fat
 - Mechanical Liquid Meter
 - Coriolis Meter
- Spray Nozzles for fat application
Types of PPLA Equipment

Feed

Load Cell

Fat

Fat

Belt
Types of PPLA Equipment

Feed

Fat

Spinning Feed Disk

Spinning Liquid Disk

Fat
Previous Research

• **Post-Pellet Liquid Application (PPLA)** has been used to apply fat, as well as **micro-ingredients**. (Froetschner, 2007)

• **Applying fat later in the feed manufacturing process preserves pellet quality.** (Froetschner, 2007)
Hypothesis

Inaccurate post pellet liquid application of fat increases production costs.
Objective

Determine the effect that various amounts of post pellet liquid fat application error has on broiler performance.
Diets

- The treatments were created from a common corn-soy basal diet.
- Fat was applied to the basal diet at three levels: 80%, 100%, and 120% of theoretical.
- The starter diet was crumbled.
- Grower and finisher diets were pelleted.
<table>
<thead>
<tr>
<th>Diets</th>
<th>Amount</th>
<th>Days Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter</td>
<td>1.5 lbs (0.68 kg)</td>
<td>0-14</td>
</tr>
<tr>
<td>Grower</td>
<td>6.0 lbs (2.73 kg)</td>
<td>14-35</td>
</tr>
<tr>
<td>Finisher</td>
<td>6.0 lbs (2.73 kg)</td>
<td>35-45</td>
</tr>
</tbody>
</table>
Treatments

• **Trt 80**: Diet with 80% of the theoretical fat.

• **Trt 100**: Diet with 100% of the theoretical fat.

• **Trt 120**: Diet with 120% of the theoretical fat.

• **Mix**: Random rotation of 80, 100, and 120% diets within starter, grower, and finisher series.
Feeding Sequence of Mix Treatment

<table>
<thead>
<tr>
<th>Starter (1.5 lbs/bird)</th>
<th>Grower (6.0 lbs/bird)</th>
<th>Finisher (6.0 lbs/bird)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trt 120</td>
<td>Trt 80</td>
<td>Trt 80</td>
</tr>
<tr>
<td>Trt 80</td>
<td>Trt 100</td>
<td>Trt 120</td>
</tr>
<tr>
<td>Trt 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trt 120</td>
<td>Trt 100</td>
</tr>
<tr>
<td></td>
<td>Trt 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trt 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trt 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trt 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trt 120</td>
</tr>
</tbody>
</table>
Feed Preparation

Add 0.5% Fat

Ingredients

Mixer

Pellet

Cooler

Add PPLA Fat
Experimental Design

- There were 32 experimental pens of 32 Ross 344 X Ross 708 chicks each.
- There were eight replicate pens for each of the four treatments total.
- BW and feed intake were recorded at 0, 14, 35, and 45 d.
- FCR was adjusted for mortality (AdjFCR).
Statistical Design

- Completely Randomized Design
- Proc GLM procedure of SAS
- Means were partitioned by LS Means
- Significance set at $P < 0.05$
<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Basal Diets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starter</td>
</tr>
<tr>
<td>Corn</td>
<td>51.67</td>
</tr>
<tr>
<td>Soybean Meal (48%)</td>
<td>37.94</td>
</tr>
<tr>
<td>Dicalcium Phosphate</td>
<td>2.09</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>0.94</td>
</tr>
<tr>
<td>Vitamins/Trace Premix</td>
<td>1.13</td>
</tr>
<tr>
<td>Amino Acids</td>
<td>0.22</td>
</tr>
<tr>
<td>Poultry Fat (Mixer)</td>
<td>0.50</td>
</tr>
<tr>
<td>Poultry Fat (PPLA)</td>
<td>5.50</td>
</tr>
</tbody>
</table>
Dietary Specifications

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Starter</th>
<th>Grower</th>
<th>Finisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME, kcal/kg</td>
<td>3150.00</td>
<td>3200.00</td>
<td>3068.00</td>
</tr>
<tr>
<td>CP, %</td>
<td>23.00</td>
<td>20.30</td>
<td>18.50</td>
</tr>
<tr>
<td>Lysine, %</td>
<td>1.29</td>
<td>1.12</td>
<td>1.10</td>
</tr>
<tr>
<td>Met + Cys, %</td>
<td>0.96</td>
<td>0.82</td>
<td>0.75</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
</tr>
<tr>
<td>Total P, %</td>
<td>0.75</td>
<td>0.67</td>
<td>0.60</td>
</tr>
<tr>
<td>AvP, %</td>
<td>0.45</td>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>100%</td>
<td>120%</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Starter - Theoretical</td>
<td>6.16</td>
<td>7.70</td>
<td>9.24</td>
</tr>
<tr>
<td>Starter - Actual</td>
<td>6.50</td>
<td>7.91</td>
<td>9.58</td>
</tr>
<tr>
<td>Starter - % Theoretical</td>
<td>84%</td>
<td>103%</td>
<td>124%</td>
</tr>
<tr>
<td>Grower - Theoretical</td>
<td>5.90</td>
<td>7.37</td>
<td>8.84</td>
</tr>
<tr>
<td>Grower - Actual</td>
<td>6.23</td>
<td>7.42</td>
<td>8.90</td>
</tr>
<tr>
<td>Grower - % Theoretical</td>
<td>85%</td>
<td>101%</td>
<td>121%</td>
</tr>
<tr>
<td>Finisher - Theoretical</td>
<td>5.02</td>
<td>6.28</td>
<td>7.54</td>
</tr>
<tr>
<td>Finisher - Actual</td>
<td>4.88</td>
<td>6.17</td>
<td>7.22</td>
</tr>
<tr>
<td>Finisher - % Theoretical</td>
<td>78%</td>
<td>98%</td>
<td>115%</td>
</tr>
</tbody>
</table>
Feed Intake

Feed Intake (kg/bird)

Age (d)

- 0-14
- 0-35
- 0-45

- 80
- 100
- 120
- Mix
Adjusted Feed Conversion Ratio

P values = $P < .05$
Discussion

- There were no effects on BW and AdjFCR until after 35 d of age.
- Birds fed the 80% fat diet from 35 to 45 d and 0 to 45 d exhibited poorer AdjFCR in comparison to the other treatments (1.85 vs. 1.79, 1.81, and 1.81).
Discussion

- Greatest effect on AdjFCR was detected in birds fed the 80% diet from 35 to 45 d (2.70 vs. 2.51, 2.55, and 2.56).
- Energy apparently became limiting above 2.2 kg BW in this study.
Discussion

- Under application has a negative impact on AdjFCR and over application increases feed cost with no additional benefit in bird performance.
Hypothesis

Inaccurate post pellet liquid application of fat increases production costs.

Accept
Conclusions

- The results indicated over application of fat simply increases feed costs and will create ingredient loss ("shrink"), at the feed mill.
- It appears that fat is often being wasted at lower BW.
Questions?