Post Pellet Liquid Application (PPLA)

Charles Stark
Liquid Application - Methods

- Apply at the die
- Spray into a screw conveyor
- Spray into a plenum or weir
- Spray using spinning disks to atomize the liquid
Liquid Application At The Die

- Spray nozzle or nozzles at the pellet mill discharge
 - Volumetric measurement based on turns of the feeder into the pellet mill

- Advantages
 - Liquid sprayed onto a hot pellet
 - Inexpensive and can be installed on existing equipment

- Disadvantages
 - Little to no retention time
 - Fat can be drawn off the surface and end up in the cooler and the cooler air system
 - Fat laden fines are drawn off at the cooler and can affect formulation of the product
 - Fat may trap extra water in the pellet
Post Pellet Liquid Application (PPLA)

Ingredients typically applied by PPLA:

- Liquid Enzymes
- Fat
- Molasses
- Vitamins
- Trace Minerals
- Medicated Feed Additives
Factors that Contribute to Fat Variation in Finished Feed

- Ingredient matrix values
- Types of PPLA equipment
- Application rates
- Sampling
- Quantity of pellet fines
- Analytical method
- Feed processing rates
Continuous Process Equipment

- **Dry Flow System for Feed**
 - Volumetric Feeder
 - Gravimetric Feeder
 - Mass Flow Feeder

- **Liquid Flow System for Fat**
 - Mechanical Liquid Meter
 - Coriolis Meter

- **Spray Nozzles for Fat Application**
Volumetric System – Flow Diagram
Volumetric System – Dry Flow Screw Conveyor
Volumetric System - Dry Flow Rotary Feeder
Volumetric System – Dry Flow Tach Generator
Mass Flow System

- Measures the weight of material conveyed
- Dry material
 - Weigh belt
 - Weigh screw
 - Impact scale
 - CentriFlow
 - Nuclear gauge
- Liquid
 - Coriolis liquid meter
Mass Flow System – Flow Diagram
Mass Flow System – Weigh Belt
Mass Flow System – Impact Scale
Mass Flow System – CentriFlow
Volumetric System – Liquid Component

Positive Displacement Pump
Mass Flow System – Liquid Component
Coriolis Meter
Mass Flow System – Coriolis Meter
Loss In Weight System

- Monitors the loss weight of material from a weigh hopper
- Dry material
 - Garner hopper
 - Weigh hopper
- Liquid
 - Loss in weight liquid scale
Loss In Weight System
Liquid Spray Into a Screw Conveyor

- Screw conveyor with spray nozzles
- Coverage can be improved with the addition of a spray plenum
 - Increases the probability of the liquid hitting the dry product in a uniform fashion
- Disadvantages
 - Nozzles apply liquid to a limited number of particles
 - Depend on the conveyor to spread the liquid
 - Spotty coverage
 - May be difficult to find nozzles to handle the full range of flow
 - Little mixing action with standard flighting
 - Cut & fold or ribbon & paddle flight
 - Nozzles
Liquid Spray Into a Screw Conveyor
Liquid Application
Spray Into a Plenum or Weir

- Plenum is a chute with spray nozzles
- Liquid sprayed as the product tumbles through the air
 - Increases the probability of the liquid hitting the pellet in a uniform fashion

- Weir
 - Product sprayed on one side, flipped over and sprayed on the other

- Disadvantages
 - Same as the screw conveyor
Liquid Application
Spray Into a Plenum or Weir
Liquid Application
Spray Into a Plenum or Weir
Liquid Application - Spinning Disks

- High speed spinning disks atomize the liquid
- Multiple disks = wider spray band
- Slots in each disk allows liquid to migrate to lower disks
- Serrated disk teeth provides multiple planes of liquid discharge = wider band of spray
 - Wider spray band = more product surface area exposed for a greater amount of time
Liquid Application - Spinning Disks

- Advantages
 - Optimum coverage
 - Closed system, no fugitive particles
 - No spray nozzles to clog
 - Liquid delivered to the disks via a hollow shaft
 - Can apply slurries
 - Less head pressure on the liquid pump

- Disadvantages
 - Requires further mixing in a drum or mixing conveyor
 - Requires more headroom than a standard screw conveyor
 - Higher cost
Types of PPLA Equipment
Liquid Application Spinning Disks

Coated product falls into the conveyor below for further mixing.
Liquid Application Spinning Disks
Addition of Dry Additives

- Dry additives applied after liquids
 - Enzymes
 - Microbial & vitamin products
- Allow time for the liquid to “settle down” after applying
 - Even amount of liquid on all particles
- Can be applied with any of the liquid application methods
 - Sealed system will prevent fugitive particles
- Dry material can be blended with the liquid being applied
 - Compatibility with the liquid
 - Can the applicator handle the slurry?
Addition of Dry Additives
Control System

- Tie all components of the liquid application process together in a central control
 - Possible to expand existing control system
 - Does it require a new control

- Operator interface
 - Push buttons
 - Touch screen
 - Computer based

- Screens should be easy to read and understand
 - Clear depiction of the application process
 - Eliminate clutter
Control System
Effect of Fat Addition on Pelleting Production Characteristics

<table>
<thead>
<tr>
<th>Fat Addition, %</th>
<th>Mixer</th>
<th>PPLA</th>
<th>Fines, %</th>
<th>Prod. Rate, tph</th>
<th>Energy Cons., kWh/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>4.7</td>
<td></td>
<td>18.0</td>
<td>11.6</td>
<td>11.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.7</td>
<td></td>
<td>22.0</td>
<td>12.1</td>
<td>9.7</td>
</tr>
<tr>
<td>3.0</td>
<td>2.7</td>
<td></td>
<td>29.2</td>
<td>13.2</td>
<td>8.7</td>
</tr>
<tr>
<td>4.0</td>
<td>1.7</td>
<td></td>
<td>31.6</td>
<td>13.2</td>
<td>7.9</td>
</tr>
<tr>
<td>5.3</td>
<td>.3</td>
<td></td>
<td>50.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Richardson and Day, 1976
PPLA – Xylanase Activity

Engelen, 1998
Questions