Conditioning, Pelleting, and Cooling

Charles Stark
Peter Ferket
Pelleting

Benefits to Pelleting

- Improve palatability
- Decrease feed wastage (feeder management)
- Destroys pathogens/microorganisms
- Reduce ingredient segregation
- Improves flowability
- Increases formulation flexibility
 - Alternative ingredients
 - Higher fat levels
Pellets vs. Mash

Advantages

<table>
<thead>
<tr>
<th>Pellet</th>
<th>Mash</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Grain particle size (<600 um)</td>
<td>- Grain particle size (>700 um)</td>
</tr>
<tr>
<td>- High inclusion of alternative ingredients</td>
<td>- Grain based formula</td>
</tr>
<tr>
<td>- Variable inclusion of alternative ingredients</td>
<td>- Lower manufacturing cost</td>
</tr>
<tr>
<td>- Higher inclusion of fat</td>
<td></td>
</tr>
<tr>
<td>- Improved flowability</td>
<td></td>
</tr>
<tr>
<td>- Less dust</td>
<td></td>
</tr>
<tr>
<td>- Improved F/G</td>
<td></td>
</tr>
</tbody>
</table>
Factors Influencing Pellet Quality

- Formulation: 40%*
- Conditioning: 20%**
- Particle Size: 20%**
- Die Specification: 15%**
- Cooling: 5%**
- Throughput: ??%**

*Nutritionist, **Feed Mill

Modified Behnke, 1994
FORMULATION
Ingredient Characteristics that Affect Pelleting

- Protein content
- Fat/oil content
- Fiber content
- Ingredient Variability
- Abrasiveness: the more abrasive, the more difficult it is to pellet
Feed Processing Research
Effect of Protein & Temperature on Pellet Quality – Coarse Feed

Linear effect protein (P<.08)
Temperature (P<.05)

561 microns

PDI, %

CP 15% CP 20% CP 25%

70 C 85 C

Stark, 1994
Feed Processing Research
Effect of Fat Type on Pellet Quality – Exp 1

<table>
<thead>
<tr>
<th>Fat Type</th>
<th>Control</th>
<th>1.50%</th>
<th>3.00%</th>
<th>6.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry Fat</td>
<td>100</td>
<td>95</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>Soy Oil</td>
<td>95</td>
<td>90</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>Choice White Grease</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>Tallow</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>75</td>
</tr>
</tbody>
</table>

Fat x Level interaction (P<.05)

Stark, 1994
Effect of Fat Addition on Pelleting Production Characteristics

(Richardson and Day, 1976)

Fat Addition, %	Pelleting Production Characteristics				
-----------------	--------------------------------——-				
	Mixer	PPLA	Fines, %	Prod. Rate, tph	Energy Cons., kWh/t
1.0	4.7	18.0	11.6	11.0	
2.0	3.7	22.0	12.1	9.7	
3.0	2.7	29.2	13.2	8.7	
4.0	1.7	31.6	13.2	7.9	
5.3	.3	50.8	-	-	
MAJOR FACTORS AFFECTING PRODUCTION RATE

Phosphate Source
Comparison of Particle Sizes

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Avg Part. Size, µm</th>
<th>Sgw</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defluorinated Phos.</td>
<td>649</td>
<td>2.01</td>
<td>Medium</td>
</tr>
<tr>
<td>Dical Phos</td>
<td>756</td>
<td>1.34</td>
<td>Very Soft</td>
</tr>
<tr>
<td>Limestone</td>
<td>651</td>
<td>1.90</td>
<td>Soft</td>
</tr>
<tr>
<td>Sand</td>
<td>431</td>
<td>1.50</td>
<td>Hard</td>
</tr>
</tbody>
</table>

Courtesy of Dr. Keith Behnke
Ingredient Variability

Does ingredient source matter?...Yes

Crops
- Weather
- Soil type
- Maturity at harvest
- Fertilizer
- Irrigation

Co-products
- Raw grains
- Dryer designs, speeds & temperature
- Fermentation process & thoroughness

Courtesy of Dr. Keith Behnke
Ingredients that Reduce Pellet Quality

- Fats and oils > 1.5% of the feed mix
- Meat and Bone meal, poultry by-product meal, meat meals
- Distillers Dried Grains with solubles
Effect of Process Factors on Pellet Durability

<table>
<thead>
<tr>
<th>Process Factor</th>
<th>% PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>70</td>
</tr>
<tr>
<td>Increase temperature 5°C</td>
<td>75.1</td>
</tr>
<tr>
<td>Increase temperature 10°C</td>
<td>79.4</td>
</tr>
<tr>
<td>Reduce fat by 0.5%</td>
<td>75.0</td>
</tr>
<tr>
<td>Add 1.5% calcium lignosulfonate</td>
<td>82.5</td>
</tr>
<tr>
<td>Decrease production rate by 20%</td>
<td>71.3</td>
</tr>
<tr>
<td>Add 10% wheat</td>
<td>75.4</td>
</tr>
</tbody>
</table>

Source: Dr. T.S. Winowiski
CONDITIONING
Purpose of Feed Mash Conditioning

- Raises the mash moisture and temperature cook
- Activates natural adhesives found in ingredients
- Softens the feed particles for increased surface binding during compression
- Increases pellet die lubrication
- Destroys micro-organisms and deactivates some anti-nutritional factors
Factors that Affect Steam Conditioning

- Mash particle size
 - Surface area increases geometrically as particle size decreases

- Retention time
 - 30 to 90 seconds for optimum pellet quality
 - 5 to 20 seconds is more typical in the industry

- Pick (Paddle) Angle
 - Retention time decreases as forward angle increases.

- Shaft speed

- Water Addition
 - Optimum conditioning at 16-17.5% moisture, with 4-5% moisture added by the conditioner
Factors that Affect Particle Bonding in Pellets

- Heat transfer
- Moisture or water content of the feed ingredient or feed mash
- Chemical composition (ingredient composition)
- Structure of the feed ingredients
- Compressive pressure
Conditioning Principles

Conditioning requires:

- Time
 - Conditioner Length
 - Conditioner Speed
 - Conditioner Pick Set Up

- Moisture
 - Steam
 - Water

- Heat
 - Steam
Particle Bonding During Pelleting
Conditioning Targets

- **Moisture & Temperature**
 - Target 17-18% moisture
 - Target 180 – 200 F temperature
 - 1% moisture increase per 20-25 F temperature
 - **Examples:**
 - **Winter** 40 F to 190 F
 - 150 F delta = 6% moisture
 - 12% to 18%
 - **Summer** 90 F to 190 F
 - 100 F delta = 4% moisture
 - 12% to 16%
Conditioning

<table>
<thead>
<tr>
<th>Response Criteria</th>
<th>No Conditioning</th>
<th>Steam Conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditioning temp, °F</td>
<td>82</td>
<td>176</td>
</tr>
<tr>
<td>Energy consumption, kWh/t</td>
<td>30.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Pfost durability, %</td>
<td>80.3</td>
<td>96.0</td>
</tr>
<tr>
<td>Maltose equiv., mg/g</td>
<td>52.2</td>
<td>37.1</td>
</tr>
</tbody>
</table>

(Skoch et al., 1983)
Starch Gelatinization and Pelleting

(Skoch et al., 1981)

<table>
<thead>
<tr>
<th>Cond. Temperature</th>
<th>Meal</th>
<th>Cond. Meal</th>
<th>Cool Pellet</th>
<th>Durability(^a), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>70° F</td>
<td>29.9</td>
<td>31.7</td>
<td>66.3</td>
<td>69.5</td>
</tr>
<tr>
<td>149° F</td>
<td>30.2</td>
<td>30.0</td>
<td>55.5</td>
<td>90.6</td>
</tr>
<tr>
<td>172° F</td>
<td>31.2</td>
<td>27.7</td>
<td>46.1</td>
<td>93.8</td>
</tr>
</tbody>
</table>

\(^a\)Pfost durability.
Extruder Pre-conditioner
Effect of Temperature on Pellet Quality

Pellet Durability Index (PDI), %

Unpublished
Extended Conditioning
(Hygieniser)

CPM Hygieniser
Extended Conditioning

Buhler

- modular
- hygienizing
 process

- biggest
 flexibility

- highest
 security

- state
 of the art
 pelleting
 technology
Steam Conditioning

- Most common conditioning temperatures
 - 185-195 F, depends on steam quality
- Good steam quality = 97% vapor
 - Increases conditioning temperature by 25 F for every 1% moisture added
- Poor steam quality = 80% vapor
 - Increases conditioning temperature by 20 F for every 1% moisture added
- Steam quality preserved by condensation traps to remove water and impurity
 - Place at low areas every 100 feet in steam line
Effect of Conditioning Temperature on Hot Pellet Temperature

- Increasing the conditioning temperature will decrease the temperature rise through the die during the pelleting process.
- Temperature rise is due to frictional heat between the die and pellet surface.
- Moisture acts as a lubricant in the die hole.

<table>
<thead>
<tr>
<th>Conditioning Temperature</th>
<th>Hot Pellet Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>185 F</td>
<td>192 F</td>
</tr>
<tr>
<td>191 F</td>
<td>194 F</td>
</tr>
<tr>
<td>194 F</td>
<td>195 F</td>
</tr>
<tr>
<td>200 F</td>
<td>199 F</td>
</tr>
</tbody>
</table>
Effect of Low Conditioning Temperature

- Increases die wear
- Requires more energy
- Reduces throughput
- Increases fines
- Increase in hot pellet temperature due to frictional heat between the die and feed/pellet surface
Effect of Temperature on Moisture

![Chart showing the effect of temperature on moisture content]

- **Mash**
- **Cond Mash**
- **Pellet**

Temperature (°C): 185, 190, 195, 200

Moisture (%): 11.1, 11.7, 11.1, 11.9, 11.1, 11.8, 11.1, 11.5
Effect of Moisture on Electrical Consumption

![Bar chart showing kWh/ton vs. Mash Moisture percentage]

- 12.2% Moisture: 5.21 kWh/ton
- 13.1% Moisture: 5.25 kWh/ton
- 14% Moisture: 5.19 kWh/ton
- 14.7% Moisture: 5.14 kWh/ton
- 15.1% Moisture: 5.09 kWh/ton
Effect of Moisture on Pellet Quality

![Bar chart showing the effect of mash moisture on PDI percentage. The chart indicates that as mash moisture increases from 12.2% to 15.1%, PDI percentage increases from 77.6% to 88.6%.]
PELLET MILLS
Pellet Mill

Single Pass Conditioner

Double Pass Conditioner

Triple Pass Conditioner
Multi-port Steam & Liquid Addition
Hygieniser
Pellet Mill Types

Belt Drive

Gear Drive
Gear Drive Pellet Mill

http://www.cpmroskamp.com/pelletmill/products/pelletmills/
Pellet Mill

Pellet Die & Rolls

Pellet Mill Video
Remote Roll Linear Adjustment

Linear Adjustment Video
Corrugated Rolls
Pellet Die

Die Hole Specifications

Diameter

Counterbore

Effective Thickness

One Step Relief

Two Step Relief

$L/D = \frac{\text{Length}}{\text{Hole Diameter}}$

$L/D = 8$

Length

$1\,\frac{1}{4}''$

$10/64''$
Types of Pellet Die Configurations

Die hole specification
Inlet:
1. Normal
2. Deep
3. Flat
4. Well type

Relief:
5. Cylindrical
6. Conical
7. Stepped

- Standard Die
- Standard Relieved Die
- Outside Rows Relieved Die
- Variable Relief Die
Pellet Die Wear

- “Honey comb” pattern of die wear is most common
- Causes of excessive die wear:
 - Improper roller adjustment
 - Uneven feed distribution
 - Trash metal and stones
- Consequence of die wear
 - Reduced pellet mill throughput
 - Increased power usage/ton
 - Reduced pellet quality
Die Specifications

- **Die Materials**
 - High Chrome
 - Alloy Dies

- **Die Diameter**
 - 1/8” to 3/4” (range cube)

- **Die Thickness**
 - 1” to 3” effective thickness

- **Die Relief**
 - Straight Bore
 - Two-step relief
 - Taper relief
Production Rate

Die Thickness

Kg/hr

Throughput

500 1000 1500
Pellet Mill Efficiency

Linear ($P<0.01$)

<table>
<thead>
<tr>
<th>Die Thickness</th>
<th>kg/hpr</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>98</td>
</tr>
<tr>
<td>35</td>
<td>96</td>
</tr>
<tr>
<td>44</td>
<td>90</td>
</tr>
</tbody>
</table>

Linear ($P<0.01$)

<table>
<thead>
<tr>
<th>Throughput</th>
<th>kg/hpr</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>73</td>
</tr>
<tr>
<td>1000</td>
<td>97</td>
</tr>
<tr>
<td>1500</td>
<td>112</td>
</tr>
</tbody>
</table>
Pellet Durability Index

Die Thickness
- 29:
- 35:
- 44:

Throughput
- 500:
- 1000:
- 1500:
Hot Pellet Temperature

Temperature, °C

Die Thickness
- 29
- 35
- 44

Througput
- 500
- 1000
- 1500
Pellet Mill Monitoring

- Mash
 - Moisture
 - Temperature
- Steam
 - Temperature
 - Pressure
- Motor
 - Amps
- Conditioned Mash
 - Moisture
 - Temperature
- Hot Pellet Temperature
- Conditioner
 - RPM
Pellet Mill Motor Load

hp

College of Agriculture & Life Sciences
Academics • Research • Extension
COOLERS
Cooling and Drying

- Purpose is to remove moisture and heat generated during the conditioning and pelleting process.
- Pellet "shock" can occur if air volume or the temperature or humidity of the cooling air is too low, resulting in stress cracks in the pellets.
- Pellet quality and shelf-life will be reduced if air volume is too low or if the ambient humidity is too high.
Requirements for Drying and Cooling Pellets

Air
- Carries away heat and moisture
 - Works only on the surface

Heat
- Required to remove moisture
 - Heated air expands, lowering the relative humidity, & increases the drying capability of the air

Time
- Required for heat and moisture to migrate to the surface
Heat and Moisture Removal

- Heat and/or Moisture always moves from higher levels to lower levels until equilibrium is achieved.
Pellet Cooler

- **Purpose**
 - Remove moisture after the pelleting process
 - Remove heat after the pelleting process
Moisture Capacity of Air

32° F 70° F 100° F

2 Grains 8 Grains 20 Grains
Psychrometric Charts

[Diagram showing percent saturation curves, adiabatic cooling, mixing, and heating zones with temperature and moisture content axes.]
Water Holding Capacity of Air

<table>
<thead>
<tr>
<th>Temperature, C</th>
<th>Moisture in Air (kg water/kg dry air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.020</td>
</tr>
<tr>
<td>30</td>
<td>0.028</td>
</tr>
<tr>
<td>40</td>
<td>0.049</td>
</tr>
<tr>
<td>50</td>
<td>0.087</td>
</tr>
<tr>
<td>60</td>
<td>0.150</td>
</tr>
<tr>
<td>135</td>
<td>1.426</td>
</tr>
</tbody>
</table>
Pellet Coolers

Types

- Horizontal Coolers
 - Single Pass
 - Double Pass
- Counter-flow Cooler
 - Round design
 - Square design
Counterflow Cooler
Counterflow Cooler

- **Features**
 - Minimal floor space required
 - Moderately high capacities available
 - Low air requirement
 - Effective at beginning and end of run
 - Lower capital cost than comparable horizontal
 - Mechanically simple

- **Limitations**
 - Not good for small particles
 - Difficult to adapt for heat addition

- **Performance**
 - Lowest air requirement
 - Most effective at drying

Diagram showing the flow of warm, moist product in, cooling zone, and cool, dry product out.
Horizontal Pellet Cooler
Horizontal Cooler – Cross Flow

Warm, Moist product in

Drying Zone

Cool, Dry product out
Factors that affect cooler performance

- Inlet air temperature
 - Cold Air – Low water holding capacity
 - Warm Air – Higher water holding capacity
- Bed depth in the cooler
 - Horizontal – 12 to 15” level across the pans
 - Counterflow – 2/3 to 3/4 full
- Air volume
PELLET QUALITY TESTS
PDI Procedure

Obtain sample → Remove fines → Re-screen and weigh the remaining whole pellets

\[PDI = \frac{\text{Weight of pellet after tumbling}}{\text{Weight of pellets before tumbling}} \times 100 \]

Weight 500 grams

Tumble sample for 10 minutes

ASAE S269.3

*Add modifiers to the tumbler to model the mills system

Pacheo, 2009
Pellet Quality Test

Modified KSU Method

Pellet Quality Index – PDI Test
Tumble 10 min with 3-5 Hex nuts
Pellet Quality Test

Holmen Tester

- 100 grams whole pellets
- Test time 30-90 seconds
Effect of Pellet Durability Index Based on Sample Weight

Sample Weight, grams

300 400 500 600

85 87 88 89 90

* 3 hex nuts/no fat