Freezing

Outline

• Examples of freezing in daily life
• Purpose of freezing
• Stages of freezing
• Effect of freezing on properties
• Types of freezers
• Freezing medium
• Shelf life and quality of frozen foods
• Equipment to characterize freezing
• Effect of solids on freezing point of solution
• Determination of freezing time

Examples in Daily Life

• Ice rink
 – 9,000 gallons of -9 ºC brine
 – 5 miles of pipes
 – 270 tons of cooling (1 ton of refrigerant = 3516.8 W)
 – Humidity and temperature control needed
 – Ice hockey versus ice skating (load, impact)
• Earth’s surface
 – 10.4 % is covered with ice
 – 20% is permanently frozen
 – Thickness of ice covering Antarctica (avg. temp. ~ -37 ºC)
 • Average: 2164 m; Max: 4785 m (>10 times height of Sears tower)
 • ~63 m rise in ocean level if all ice melted; add ~7 m for Greenland; not much in arctic
• Does the water inside animals living in extreme cold, freeze?
• Do hot water pipes burst before cold water pipes in winter?
• Can the engine coolant or fuel in our car freeze?
• Does Niagara Falls freeze?
• How does an ice maker work?
• How does a frost-free freezer work?
• How does a snow-maker at a ski slope work?
• How does a de-icer (for cars and planes) work?
Examples in Daily Life (contd.)

- Ice as an insulator
 - Igloo
 - Freezing of pond (do fishes survive? What does wind do?)
- Depression in freezing point
 - Salting of roads during winter
- Freezing foods
 - Blue ice, gel pack, dry ice, liquid nitrogen
 - How is a popsicle made?
- Safety of using liquid nitrogen (in a room or car)
 - 10 liter dewar spilt in a 17 x 17 x 8 room
 - Reduces oxygen level to < 19.5% (need to use respirator)
- Freeze drying of milk/coffee powder
 - Lower the temperature and use vacuum to sublime ice

Freezing

- Purpose of freezing of foods
 - To slow down rates of detrimental reactions by lowering temperature and water activity (a_w)
 - Microbial spoilage
 - Enzyme activity
 - Nutrient loss
 - Sensorial changes
 - Prolongs shelf life beyond that of refrigerated foods

*Water activity (a_w): Amount of water available for reactions; a_w = equilibrium relative humidity

*Guideline: Generally, rates of reactions double for every 10 °C rise in temperature

Effect of Temperature on Shelf Life

![Graph showing the relationship between temperature and shelf life](image)
Freezing of Foods

- Quality of frozen food depends on
 - Rate of freezing (°C/hr)
 - Ambient storage (freezing medium) temperature (T_s)
 - Constancy of temperature (cycling of temp. is not good)
- Factors affecting rate of freezing (°C/hr)
 - Convective heat transfer coefficient (h)
 - Ambient storage (freezing medium) temperature (T_s)
- Advantages of rapid freezing
 - Smaller ice crystals are formed
 - Thus, less structural damage to product
 - Prevents concentration (of sugars, fats etc.)
- Freezing time
 - Time taken to freeze majority (~95%) of product
 - A product is never completely frozen (~5-10% unfrozen)

Shelf Life

- High Quality Life (HQL)
 - Period of frozen storage when a difference in quality can just be detected
- Practical storage life (PSL)
 - Period of frozen storage during which product retains its characteristics and is suitable for consumption
 - At -12 °C
 - PSL = ~4 months for fruits and seafoods
 - PSL = ~6 months for vegetables
 - PSL = ~8 months for meats
- Typical frozen storage temperature
 - Fruits and vegetables: ~ -18 °C
 - Ice cream and fatty fish: ~ -25 °C

Freezer Burn

- Refers to moisture loss as ice crystals sublimate from surface
 - Produces brownish spot as tissue becomes dry
 - Could cause off-flavors
 - It is a quality issue and not a safety issue
 - Moisture resistant wrap can prevent freezer burn
Stages of Freezing

- Super-cooling or under-cooling
 - Cooling slightly below initial freezing point
- Nucleation
 - Formation of ice crystals
- Crystal growth
 - Increase in size of ice crystals
- Maturation
 - Stabilization of ice crystals

Ice-crystal seeding is sometimes done to initiate and accelerate freezing

Freezing Curve

% Water Frozen at Different Temperatures
Properties of Frozen Foods

- As temperature decreases
 - Density decreases
 - Enthalpy decreases
 - Apparent specific heat decreases
 - Thermal conductivity increases
Apparent Specific Heat of Sweet Cherries as a function of Temperature

![Graph showing apparent specific heat of sweet cherries as a function of temperature. Initial freezing temperature is -2.6°C.](image)

Thermal Conductivity of Lean Beef as a function of Temperature

![Graph showing thermal conductivity of lean beef as a function of temperature.](image)

Types of Freezers

- Direct contact (Usually Individual Quick Freeze -- IQF type)
 - Air blast
 - Fluidized bed (particles on mesh conveyor; air from below)
 - Immersion (N₂, CO₂, Freon)
 - Fastest, but most expensive
- Indirect contact
 - Plate (usually, food is within package)
 - Apply pressure on plates to minimize resistance to heat transfer
 - Air blast (usually, food is within package)
 - Scraped surface heat exchanger
 - Jacket (evaporator) has refrigerant
 - 60-80% of latent heat is removed
 - Product exits as a slurry

Freezers can be batch or continuous
Freezing Medium

- **Ice**
 - At atmospheric pressure, melting point is 0 °C
 - Latent heat of fusion = 6,003 J/mol = 333.5 kJ/kg
- **Liquid nitrogen**
 - At atmospheric pressure, boiling point is -195.8 °C
 - Latent heat of vaporization = 5,580 J/mol = 199 kJ/kg
- **Dry ice (solid CO₂)**
 - At atmospheric pressure, sublimation point is -78.5 °C
 - Latent heat of sublimation = 25,214 J/mol = 571 kJ/kg

Equipment to Characterize Freezing

- **Refractometer**
 - Used to determine total solids (or sugar) in solution
- **Cryoscope**
 - Used to determine initial freezing point of solution
- **Differential Scanning Calorimeter (DSC)**
 - Used to determine freezing point, specific heat, latent heat, apparent specific heat

Adding a Solute to a Solvent

- When a solute is added to a solvent
 - The vapor pressure of the solvent decreases
 - Raoult’s law: Partial pr. of solvent ∝ mole fraction of solvent
- **Colligative properties**
 - Properties of solutions that depend on relative number of solute particles to solvent particles
 - Lowering of vapor pressure
 - Elevation in boiling point
 - Depression in freezing point
 - Osmotic pressure
Depression in Freezing Point (ΔT_f)

- Addition of a solute (say, salt) in a solvent (say, water) decreases freezing point by a magnitude $\Delta T_f = T - T'$ given by the Clausius-Clapeyron equation:

$$\ln(X_w) = \frac{\lambda_{\text{fusion (water)}}}{R_g} \left[\frac{1}{T} - \frac{1}{T'} \right]$$

X_w: Mole fraction of water

$\lambda_{\text{fusion (water)}}$: Latent heat of fusion of solvent (water)

$\lambda_{\text{fusion (water)}}$ at atmospheric pressure = 6,003 J/mol = 333.5 kJ/kg

R_g: Universal gas constant = 8.314 J/mol K

T: Freezing point of pure solvent (water) in Kelvin; $T = 273$ K

T': Freezing point of solution after adding solids (in Kelvin)

X-w: Mole fraction of water

...continued...

Mole Fraction of Water (X_w)

$$X_w = \frac{m_w / M_w}{m_w / M_w + m_s / M_s}$$

- m_w: Mass of water
- M_w: Molecular weight of water (=18 g)
- m_s: Mass of solute
- M_s: Molecular weight of solute

Note: m_w / M_w is the no. of moles of water and m_s / M_s is the no. of moles of solute

...continued...

Depression in Freezing Point (ΔT_f) for Dilute Solutions

$$\Delta T_f = T - T' = k_f (m)$$

k_f: Molal freezing point constant of solvent (water)

($k_f = 1.86 \degree C/mol$ for water)

m: Molality (no. of moles of solute per kg solvent)
Ways of Expressing Concentration of a Solution

- Molality
 - No. of moles of solute per kg solvent
- Molarity
 - No. of moles of solute per liter of solution
- Normality (for reactions)
 - No. of gram equivalent weights of solute per liter of solution
 - Normality = (Molarity) x (No. of protons exchanged)
- Formality
 - No. of formula equivalent weights of solute per liter of solution
 - Formality = Molarity except for ions

Freezing Time (t_f): Plank’s Equation

\[t_f = \frac{\rho_f \lambda_{fusion} (product) \left[\frac{P'}{a} + \frac{R'}{a^2} \right]}{h} \]

- \(\rho_f \): Density of frozen product, kg/m³
- \(k_f \): Thermal conductivity of frozen product, W/m K
- \(\lambda_{fusion} (product) \): Latent heat of fusion of product, J/kg
- \(\lambda_{fusion} (product) \sim (\% \ moisture) \times (\lambda_{fusion} (water)) \)
- \(T_f \): Initial freezing point of product, K
- \(T_a \): Temperature of freezing medium, K
- \(h \): Convective heat transfer coefficient, W/m² K

- Sphere: \(a = \text{diameter}, \ P' = 1/6, \ R' = 1/24 \)
- Infinite cylinder: \(a = \text{diameter}, \ P' = 1/4, \ R' = 1/16 \)
- Infinite slab: \(a = \text{thickness}, \ P' = 1/2, \ R' = 1/8 \)

Plank’s Equation (Assumptions)

- At \(t = 0 \), the product is at its initial freezing point
 - Time for removal of latent heat is determined
 - Time for removal of sensible heat is not accounted for
 - This can be calculated using Heisler chart
- Freezing takes place in 1 dimension (direction) only
 - Thus, 1-D shapes: Sphere, infinite cylinder, infinite slab
- Density and thermal conductivity of the product remain constant during freezing
Summary

- Purposes of freezing
 - Slowing down rates of reactions (by lowering temperature and time)
 - Microbial spoilage, enzyme activity, nutrient loss, senescent changes

- Quality of frozen food depends on
 - Rate of freezing (°C/hr), freezing medium temperature (T_i), constancy of temperature (cycling of temp. is not good)

- Factors affecting rate of freezing (°C/hr)
 - Convective heat transfer coefficient (h), freezing medium temperature (T_a)

- Advantages of rapid freezing
 - Smaller ice crystals formed (thus, less structural damage to product), prevents concentration (of sugars, fats etc.)

- Stages of freezing
 - Super-cooling, nucleation, crystal growth, maturation
 - As temperature decreases
 - Density, enthalpy, apparent specific heat decreases; thermal conductivity inc.

- Types of freezers
 - Direct contact: Air blast, fluidized bed, immersion
 - Indirect contact: Plate, air blast, scraped surface

- Adding solute to solvent decreases freezing point (depends on mole fraction of solvent)

- Freezing time calculation using Plank’s equation
 - Time for latent heat removal only, 1-D freezing, constant properties (k, ρ)
 - Time for sensible heat removal can be determined using Heisler charts