Medium-Chain Fatty Acids but Not L- Carnitine Accelerate the Kinetics of 14C Triacylglycerol Utilization by Colostrum-Deprived Newborn Pigs

Kinam N. Heo, Xi Lin, In K. Han and Jack Odle

Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 and *Department of Animal Science and Technology, Seoul National University, Suweon 441-744, South Korea

ABSTRACT The effect of L-carnitine on in vivo fatty acid utilization was determined using colostrum-deprived newborn piglets fed emulsified triglycerides (TG) composed of [1-14C]octanoate (tri-8:0) or [1-14C]octadecanoate (tri-18:1). A soy protein-based liquid diet devoid of L-carnitine was fed piglets for 1 d to allow development of fatty acid-metabolizing enzymes and intestinal fat digestion and absorption before assessment of in vivo fat utilization. The radiolabeled TG were fed in isoenergetic amounts (97.7 kJ/kg0.75), with or without L-carnitine (1 mmol/kg0.75) as 30% (v/v) emulsions, using polyoxyethylene sorbitan monooleate as an emulsifier. Expired CO2 was quantified and specific radioactivity (Bq/mmol) was determined at 20-min intervals over 24 h. The rate (mmol ATP/kg−0.75·min−1) and extent (mol ATP/kg0.75) of TG oxidative utilization (i.e., composite of digestion, absorption and oxidation) were calculated from the kinetics of 14CO2 expiration. The maximal rate and extent of tri-8:0 oxidation were three and fourfold greater than those of tri-18:1, respectively (P < 0.001), and tri-18:1 delayed the time to reach 10 and 50% of maximal oxidation rate by 1.2 and 1.9 h (P < 0.01, respectively), regardless of supplemental carnitine. Collectively, these findings quantify the accelerated oxidation of medium-chain vs. long-chain triglycerides, but fail to support a need for supplemental carnitine to maximize fat oxidation in colostrum-deprived piglets. J. Nutr. 132: 1989–1994, 2002.

KEY WORDS: • pigs • neonate • carnitine • triglycerides • fatty acid utilization

The central role of fat metabolism during the early neonatal period of all mammals is unequivocal (1). The predominant fuel sources provided to the fetus, in utero, are glucose, lactate and amino acids (2). In contrast, at birth, the metabolism of the newborn must rapidly adjust to accommodate the use of fat as a primary fuel because up to 70% of milk energy is contributed by fat (1). This nutritional/biochemical adaptation is paramount to the survival of the newborn, whose metabolic rate increases two- to threefold at birth. Indeed, nutrient composition of newborn pigs reveals negligible body fat (<2%) (3) and little stored glycogen (4), indicating that immediate and efficient exogenous energy sources are needed during this critical life stage. Research using preparations of emulsified medium-chain triglycerides (MCT) (3) has shown that neonatal piglets can digest and absorb MCT, and oxidize the medium-chain fatty acids (5), but oral doses of nonemulsified LCT are not efficiently absorbed and utilized by neonatal piglets (6).

The established biochemical role of carnitine is in the transport of long-chain fatty acids across the inner mitochondrial membrane (7). Carnitine is a cosubstrate of carnitine palmitoyltransferase I (CPT-I), and the carnitine status could plausibly have an impact on the use of LCT as a metabolic fuel (8–10). Furthermore, some investigators have shown the stimulatory effects of carnitine on octanoate oxidation by rat skeletal muscle (11), whereas others have suggested that oxidation of medium-chain fatty acids (C6 to C12) should be carnitine independent because they are presumably activated to their CoA thioesters within the mitochondrial matrix (12). In addition, carnitine and carnitine acetyltransferase provide a mechanism to modulate the acetyl-CoA to free CoA ratio to further oxidation by regenerating free CoA during fasting, high fat feeding and exercise (13).

Clinical concerns regarding the management of hypoglycemic patients and premature neonates led to the use of MCT and/or carnitine to enhance energetic supply during parenteral nutrition (14–18). However, other investigators have questioned the clinical benefits of MCT (19–22). Likewise, interest in production agriculture resulted from the desire to decrease mortality—ascribed to inadequate energy supply—of low-birth-weight piglets (23). Even though several in vitro and in vivo studies with neonatal pigs have shown increases in fatty acid oxidation upon carnitine supplementation (15,16,24,25), studies have yet to be conducted to confirm these effects under more practical conditions that may be extended for use in medical and agricultural sciences.
Specifically, experiments herein examined how fatty acid chain length and supplemental l-carnitine would affect the maximal rate and extent of oxidation of enteral [1-14C]triglycerides (TG) by 1-d-old colostrum-deprived pigs. It is the first study to directly evaluate carnitine effects on in vivo fatty acid oxidation of piglets fed TG of various fatty acid chain lengths (medium vs. long). The data will show that fatty acid chain length considerably affects the kinetics of [1-14C]TG utilization of newborn pigs, but that carnitine supplementation produced no detectable effect.

MATERIALS AND METHODS

Animals and diet. All animal procedures were approved by the Institutional Animal Care and Use Committee of North Carolina State University. Colostrum-deprived newborn pigs were obtained from the Lake Wheeler Field Laboratory of North Carolina State University. A total of 20 piglets (1.5 ± 0.4 kg, mean ± SD) were removed from the sow at birth, before suckling, in flasks. Piglets were weaned onto a milk replacer (Skimlin, Louis, MO) designed for continuous collection of expired CO$_2$ (16). Each chamber was maintained at 35°C for the duration of the 24-h experiment, and air flow through each chamber was maintained at 2.0 L/min. Total expired 14CO$_2$ was collected in 1.8 mol NaOH/L (16) over continuous 20-min periods throughout the first 12 h. During the second 12 h, CO$_2$ collection was reduced to one 20-min sampling each hour. The amount and specific radioactivity of expired CO$_2$ were determined after precipitation as BaCO$_3$ (31) and used to calculate the rate and extent of triglyceride oxidative utilization (i.e., composite of digestion, absorption and oxidation) throughout the 24-h experiment. The tri-8:0 dosage (6.5 mmol/kg$^{0.75}$) was based on Odle et al. (28), as the maximal, nontoxic oral gavage. Similarly, the carnitine dosage (1.0 mmol/kg$^{0.75}$) was selected based on a previous study (32), which determined the relationship between oral carnitine dose, plasma carnitine fractions and renal thresholds. The plasma-free carnitine (throughout 20-h postdosing) of piglets gavaged with 0.5 mmol/kg$^{0.75}$ of carnitine and 6.5 mmol/kg$^{0.75}$ of tri-8:0 was threefold higher than that of piglets not receiving supplemental carnitine (35.6 vs. 8.3 µmol/L), but was less than the renal threshold (46.4 vs. 2.0 µmol/L). Based on this, we reasoned that a dosage of 1.0 mmol/kg$^{0.75}$ would provide ample carnitine in the current study. At the end of each trial, piglets were killed by sodium pentobarbital overdose (200 mg/kg, i.v.).

Calculations and statistics. Piglets were allotted to one of four treatments according to a 2 × 2 factorial, randomized complete block design with five replicates (33): 1) tri-8:0, 2) tri-8:0 with l-carnitine, 3) tri-18:1, 4) tri-18:1 with l-carnitine. Oxidation data were analyzed using the general linear models (GLM) procedure of SAS (SAS Institute, Cary, NC) with an additional split-plot in time (33). One piglet from the tri-8:0 with l-carnitine group was excluded from the data because it died after 2.5 h into the experiment.

The transfer quotient, defined as the fraction of CO$_2$-carbon derived from TG was estimated by dividing the specific radioactivity (Bq/µmol) of expired CO$_2$ at each sampling time by the specific radioactivity of the infused TG (Bq/µmol of TG), with the assumption that the 1-14C reflected the fate of all carbon in the TG molecule. The amount of CO$_2$ expired (µmol/min) at each sampling time was multiplied by the respective transfer quotient to estimate the rate of conversion of the TG to CO$_2$, which was scaled to the metabolic body size (kg$^{0.75}$) of each respective pig (µmol MCT-kg$^{-0.75}$-min$^{-1}$). To correct for differences in molar energy content between tri-8:0 and tri-18:1, data were subsequently expressed in terms of ATP yield (mmol ATP/µmol 14C, assuming that 205 and 454 mol of ATP were derived from the complete oxidation of tri-8:0 and tri-18:1, respectively. The isotopic flux rates represented the composite rates of TG digestion, absorption and oxidation to CO$_2$, and were generally termed “oxidative utilization.” Cumulative oxidative utilization curves were established by summation of TG utilization over time, which was subsequently divided by energy intake and expressed as percentage. A four-parameter logistic equation (34) was fitted to the data for each piglet using the NLIN procedure of SAS. The overall extent of oxidative utilization was estimated by extrapolation of the logistic curves to $t = ∞$. The times and magnitude of peak TG utilization, along with the extrapolated extent of oxidation, also were analyzed as a randomized complete block design with a 2 × 2 factorial arrangement of treatments (fatty acid chain length × l-carnitine), using the GLM procedure of SAS. Significant differences were accepted at $P < 0.05$.

RESULTS

The expiration rate of CO$_2$ (Fig. 1A) was not affected by treatment ($P > 0.2$), but decreased by 22% over 24 h. The specific radioactivity of expired CO$_2$ from the pigs fed tri-8:0 peaked near 3 h, remained elevated through roughly 6 h and declined gradually over 24 h (Fig. 1B). In contrast to the tri-8:0, the specific radioactivity of the expired CO$_2$ from pigs fed tri-18:1 peaked near 5 h and declined more gradually. Effects of fatty acid chain length and an interaction between

*Each kilogram of diet (dry matter basis) contained 338 g isolated soy protein, 148.1 g soybean oil, 341.1 g lactose, 50 g sucrose, 4.1 g l-histidine, 0.7 g l-leucine, 1.7 g l-valine, 2.8 g l-lysine, 0.3 g l-tryptophan, 1.6 g l-threonine, 10 g xanthan gum, 13.2 g CaCO$_3$, 43.3 g dicalcium phosphate, 5 g mineral mixture, 13.3 g vitamin mixture, 10 g lecithin, 8.3 g NaCl, 0.5 g MgSO$_4$ 4.5 g K$_2$HPO$_4$. The calculated nutrient composition of diet per kilogram was 16.14 MJ metabolizable energy, 300.9 g protein, 150.1 g fat, 343.8 g lactose, 15 g Ca, 10.3 g P, 3.5 g Na, 5.1 g Cl, 3.0 g K, 0.4 mg Mg, 23.2 g arginine, 4.0 g cysteine, 8.3 g threonine, 12.3 g phenylalanine, 4.0 g tryptophan, 10.5 g tyrosine, 15.9 g valine, 4.0 g l-carnitine, 1.0 mmol/kg$^{0.75}$]"
fatty acid chain length and time were observed for the entire duration after feeding ($P < 0.001$). However, carnitine supplementation was without effect ($P > 0.1$).

The data in Figure 1 were used to compute TG oxidative utilization rates (i.e., digestion, absorption, and oxidation), as shown in Figure 2, to provide a more effective assessment of fatty acid chain length and carnitine effects. Figure 2A illustrates the time course of TG oxidative utilization (mmol ATP kg$^{-0.75}$ min$^{-1}$), which showed treatment effects similar to those in Figure 1B (i.e., fatty acid chain length effect and a fatty acid chain length × time interaction, $P < 0.001$). To further compare the time course of TG oxidative utilization rates, the maximal utilization rate and observed times for corresponding rates (10, 50 and 100% of maximal utilization rate) were determined for each piglet (Tables 1 and 2). Because peak oxidative utilization rates rose at slightly different times among piglets within a treatment, these data differ from those of Figure 2A, which were averaged within the sampling time. The magnitude of maximal oxidative utilization rate was threefold higher for tri-8:0 than that for tri-18:1 ($P < 0.001$, Table 1). The time of maximal oxidative utilization was 6.8 ± 0.9 h after feeding and was not affected by fatty acid chain length or carnitine ($P > 0.4$, Table 2). On the other hand, the time of the peak in oxidative utilization of tri-8:0 preceded by 2.2 h that of tri-18:1 (2.6 ± 0.4 h vs. 4.8 ± 0.3 h, $P < 0.001$), which was similar to data in Figure 1B. Likewise, increased chain length delayed the time to reach 10 and 50% of maximal utilization rate by 1.2 and 1.9 h ($P < 0.001$ and $P < 0.01$, respectively). Based on these kinetic data, tri-8:0 was oxidized at a rate greater than 50% of the maximal oxidative utilization rate from 2 to 10 h after feeding. However, 50% of the maximal oxidative utilization rate was reached at 4 h and was maintained for only 6.5 h in tri-18:1–fed piglets. In contrast to the time course before the maximal rate was reached, the times to descend to 50 and 25% of the maximal utilization rate were not affected by fatty acid chain length ($P > 0.05$), and the slopes of utilization observed during the declining phase were more moderate than those observed previously (28).

To measure the overall extent of TG oxidative utilization, the areas under the utilization curves in Figure 2A were estimated by summation of the data and fitting logistic curves (Fig. 2B). The extent of TG oxidative utilization was fourfold greater for tri-8:0 than that for tri-18:1 ($P < 0.001$), but was not affected by carnitine ($P = 0.9$). When expressed as the percentage of energy intake, tri-8:0 and tri18:1 were utilized 70 and 14.6%, respectively.

DISCUSSION

Orogastric vs. parenteral nutrition. Despite the substantial biochemical basis for formulas containing MCT, recent research has yet to confirm the putative advantages of MCT within total parenteral nutrition regimens used in clinical studies (20–22). Compared to LCT emulsions, MCT/LCT (50/50%) emulsions did not increase lipid oxidation in criti-
Effects of fatty acid chain length and L-carnitine (Carn) on the rate and extent of emulsified triglyceride utilization by 1-d-old piglets1,2

<table>
<thead>
<tr>
<th>Piglets, n</th>
<th>Carn (−)</th>
<th>Carn (+)</th>
<th>Carn (−)</th>
<th>Carn (+)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, kg</td>
<td>1.48</td>
<td>1.49</td>
<td>1.46</td>
<td>1.46</td>
<td>0.05</td>
</tr>
<tr>
<td>Triglyceride (TG) intake</td>
<td>mmol TG/kg0.75</td>
<td>mmol ATP/kg0.75</td>
<td>mmol ATP/kg0.75</td>
<td>mmol ATP/kg0.75</td>
<td>mmol ATP/kg0.75</td>
</tr>
<tr>
<td>6.44</td>
<td>1.32</td>
<td>1.45</td>
<td>0.91</td>
<td>68.4</td>
<td>1.18</td>
</tr>
<tr>
<td>6.41</td>
<td>1.31</td>
<td>1.18</td>
<td>0.97</td>
<td>73.0</td>
<td>0.97</td>
</tr>
<tr>
<td>2.93</td>
<td>1.33</td>
<td>0.37</td>
<td>0.23</td>
<td>16.9</td>
<td>2.94</td>
</tr>
<tr>
<td>2.94</td>
<td>1.35</td>
<td>0.29</td>
<td>0.16</td>
<td>12.3</td>
<td>0.01</td>
</tr>
<tr>
<td>0.93</td>
<td>0.11</td>
<td>0.04</td>
<td>3.2</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1 Values are means; SEM represent pooled SEM from ANOVA, n = 4–5 as indicated.
2 After colostrum-deprived piglets were fed carnitine-deprived soy milk for 19 h, they were given trioctanoylglycerol (tri-8:0) or trioctadecanoylglycerol (tri-18:1) with or without 1 mmol/kg0.75 of L-carnitine by gavage in a 30% (v/v) oil-in-water emulsion. Utilization refers to the composite of digestion, absorption and oxidation to CO\textsubscript{2} after feeding triglycerides.
3 Fatty acid chain length effect (P < 0.001).

Effects of fatty acid chain length and L-carnitine (Carn) on the time course of emulsified triglyceride utilization by 1-d-old piglets1,2

<table>
<thead>
<tr>
<th>Piglets, n</th>
<th>Carn (−)</th>
<th>Carn (+)</th>
<th>Carn (−)</th>
<th>Carn (+)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of corresponding rate, h</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>0.22</td>
</tr>
<tr>
<td>10% of maximal ratea</td>
<td>0.53</td>
<td>0.58</td>
<td>1.80</td>
<td>1.73</td>
<td>0.51</td>
</tr>
<tr>
<td>50% of maximal rateb</td>
<td>1.80</td>
<td>2.17</td>
<td>3.53</td>
<td>4.20</td>
<td>0.93</td>
</tr>
<tr>
<td>Maximal rate</td>
<td>7.00</td>
<td>7.42</td>
<td>6.60</td>
<td>6.33</td>
<td>1.31</td>
</tr>
<tr>
<td>50% of maximal ratec</td>
<td>10.67</td>
<td>13.63</td>
<td>9.70</td>
<td>11.50</td>
<td>1.54</td>
</tr>
<tr>
<td>25% of maximal rated</td>
<td>17.50</td>
<td>20.50</td>
<td>19.50</td>
<td>19.90</td>
<td>0.46</td>
</tr>
<tr>
<td>Time of peak oxidationa</td>
<td>2.70</td>
<td>2.96</td>
<td>4.50</td>
<td>5.07</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1 Values are means; SEM represent pooled SEM from ANOVA, n = 4–5 as indicated.
2 After colostrum-deprived piglets were fed carnitine-deprived soy milk for 19 h, they were given trioctanoylglycerol (tri-8:0) or trioctadecanoylglycerol (tri-18:1) with or without 1 mmol/kg0.75 of L-carnitine by gavage in a 30% (v/v) oil-in-water emulsion. Utilization refers to the composite of digestion, absorption and oxidation to CO\textsubscript{2} after feeding triglycerides.
3 Fatty acid chain length effect (P < 0.001 and P < 0.01, respectively).
4 Before the time of maximal rate.
5 After the time of maximal rate.
6 The first peak followed by decline after feeding was considered as the representative peak to describe the kinetics of in vivo oxidation.
al. (6) and Odle et al. (28). Instead of 1-d-old piglets suckling sow’s colostrum (28), colostrum-deprived 1-d-old piglets were used to remove the maternal carnitine supply through milk. Because milk consumption affects enzymes of fat digestion and absorption (38,39), piglets were fed a soy-based liquid diet devoid of carnitine for 1 d to develop these enzymes (i.e., gastric and pancreatic lipase, etc.), unlike unsuckled 0-d piglets used by others (6). Specifically, LCT utilization may be significantly affected by these enzymes, and the lack of developed enzymes may limit long-chain fatty acid utilization compared to that of MCT (3). Furthermore, to minimize any developmental variation in diet intake among piglets, orogastrotric feeding scaled to metabolic body size was used. Although piglets were fed a soy-based liquid diet for 13 h (10 times), it cannot be excluded that the artificial diet was limited in some factors (compared with sow’s colostrum) that are essential for intestinal enzymes to develop (40). If so, this could result in delayed time of maximal oxidative utilization, and decreased slope of utilization during the declining phase (c.f. Table 2, Fig. 2).

Effect of fatty acid chain length on estimated energetics. The ATP turnover in the piglets (estimated from the rate of CO₂ production) was used to convert the rate and extent of TG utilization to the estimates of energetic contributions (41). The maximal rate and the average over 24 h of energy expenditure were 3.8 and 2.7 mmol ATP/kg⁻₀.⁷₅ min⁻¹, respectively. During peak utilization, tri-8:0 and tri-18:1 were oxidized at a rate to meet 35% (1.32/3.8) and 9% (0.33/3.8) of piglets’ energy expenditure, respectively. The oxidative utilization (Table 1) of tri-8:0 could supply energy sufficient for 5.8 h (e.g., 940 mmol ATP/kg⁻₀.⁷₅ × 2.7 mmol ATP/kg⁻₀.⁷₅ min⁻¹ × 60 min/h); however, tri-18:1 could sustain the piglet for only 1.2 h (e.g., 195 × 2.7 × 60).

Carnitine effects. This study is the first to evaluate directly the effect of carnitine on in vivo fatty acid oxidation by neonatal pigs fed TG composed of various fatty acid chain lengths (medium vs. long). Because of the well-described metabolic roles of carnitine in fatty acid metabolism (7), we expected supplemental carnitine to increase dietary MCT and LCT oxidation in colostrum-deprived newborn pigs, even though the mechanism of stimulation might be different for each fatty acid. Indeed, we showed previously that supplemental carnitine could enhance the oxidation of intravenously infused octanoate, and that effects were elevated as infusion rates increased from 35 to 100% of piglet energy expenditure (15,16). We reasoned these effects to be related to carnitine’s ability to buffer the acyl-CoA to free-CoA ratio. Failure to observe similar effects in the present study may stem from the lower overall rates of fatty acid oxidation when compared with the intravenous/infusion studies. In contrast, for long-chain fatty acids, we expected that the reduced carnitine status of colostrum-deprived piglets (42) might impair fat oxidation, compared with carnitine-supplemented littersmates, by limiting entry into mitochondria by carnitine palmitoyltransferase I. Indeed, in slightly older pigs (8,9) we were able to detect alterations in nutrient partitioning with carnitine supplementation, consistent with this hypothesis. In the present study, inherently high animal-to-animal variation in development and digestion capacity of LCT may have precluded our detection of possible carnitine effects. The ranges of accumulative oxidation (% of energy intake) were 43.1–64.0% and 4.3–21.3% for tri-8:0 and tri-18:1, respectively; the CV after statistically removing variation attributable to replication for tri-18:1 was ninefold greater than that of tri-8:0 (57% vs. 6%). This may be not surprising, considering that digestion, absorption and metabolism of LCT include more complex and enzyme-regulated steps than those of MCT (5,43). It is possible that diverse ontogeny of digestion and absorption in piglets resulted from the liquid diet feeding as well as genetic differences. Although liquid diet feeding increased the capacity of fatty acid enzymes and intestinal fat absorption for LCT, it may not ameliorate relative variations (i.e., CV) after 1 d. In summary, based on results from this study, L-carnitine did not significantly increase in vivo fatty acid oxidative utilization using safe doses of MCT (< 6.5 mmol/kg⁻₀.⁷₅) over the short term. However, it cannot be excluded that L-carnitine may alleviate acyl intoxication when neonatal animals receive MCT long term (13). Collectively, this study shows that fatty acid chain length (medium vs. long) has a profound effect on the kinetics of oral [¹⁴C]TG utilization by newborn pigs. The maximal rate of tri-8:0 oxidative utilization (i.e., composite of digestion, absorption and oxidation) and the extent (Table 1) of utilization were three- and fourfold greater than those of tri-18:1, respectively, and tri-18:1 delayed the time to reach the 10 and 50% of maximal utilization rate by 1.2 and 1.9 h (Table 2), respectively, regardless of carnitine supplementation.

ACKNOWLEDGMENT

The authors thank Ralph House for his expert technical assistance with this experiment.

LITERATURE CITED

