CHIPDESIGN – FROM THEORY TO REAL WORLD

Guillermo Payá-Vayá, Thomas Jambor,
Konstantin Septinus, Sebastian Hesselbarth,
Holger Flatt, Marc Freisfeld, Peter Pirsch
Overview

- Introduction
- Seminar Description
- The Project
 - Design Concept
 - Project Phases
 - ASIC Manufacturing and Testing
- Evaluation
- Conclusions
Introduction

- University electrical engineering lectures
 - Computer architecture
 - ASIC design
 - Fundamentals of Microelectronic

- Practical training at universities
 - HDL digital design courses limited to FPGA-examples
 - High expenses and experience for EDA-tools required
 - Design issues not included in small projects

- How to provide a suitable solution?
ChipDesign Seminar

- Project-oriented ASIC design seminar
 - 1999-2002 : Least Cost Router
 - 2003-Today : 8-bit RISC Microcontroller

- Motivation: “From theory to real world”

- Focus
 - Practical knowledge
 - Teamwork experience

- Goal
 - Chip manufacturing
Seminar Description: General

- Extend theoretical study by practical aspects
- Duration: 15 week
- ~24 Students
 - Electrical engineering and computer science
 - 3rd - 5th year with bachelor or compatible degree
- Supervision
 - Guaranteed by members of the research staff (tutors)
- Equipment provided by the university
 - Workstations, EDA tools, communication platform,…
Seminar Description: Focus

- **Technical skills**
 - Design of hardware architectures
 - Hardware description language (verilog)
 - Verification strategies
 - Fundamentals of integrated circuit: Backend

- **Social skills**
 - Team work (4 students)
 - Responsible for a subtask of the overall project
 - Status meetings and presentations
Seminar Description: Learning Approach

- Self-regulated learning
- Knowledge, Student Process and Project
- One group (max. 4 students), one tutor, one task
Specific tutorials synchronized with design process

Status meeting every week
The Project: LCR Design Concept

- Least Cost Router
 - Topic from 1999 to 2002
 - Controller for choosing the cheapest telephone provider
 - Modules:
 - keyboard interface
 - display controller
 - synthesizer for a loudspeaker
 - central control unit

- Problems:
 - Dedicated hardware with limited functionality
 - FSM-based modules with strong dependencies
The Project: *IMS-micro* Design Concept

- **8-bit RISC microcontroller**
 - Introduced in 2003
 - Programmable hardware design
 - ATMEL AVR 90S8515 instruction set compatible

- **Advantages:**
 - Education on system level aspects, e.g. computer architecture and low-level software programming
 - Sophisticated modules with fewer dependencies
The Project: Phase A (W0 – W7)

- **Module Implementation**
 - *Instruction Decoder (given)*
 - Group 1. I2C interface
 - Group 2. SRAM Controller and Pin Mapper
 - Group 3. UART Controller
 - Group 4. Timer and I/O Ports
 - Group 5. Register File and PC Unit
 - Group 6. ALU and Address Decoder

- **Tutorials**
 - W1 – Verilog-HDL tutorial
 - W2 – Writing test-benches. Functional verification
 - W3 – Logic Synthesis tutorial
The Project: Phase B (W8 – W13)

- Top-level design
 - Sub-module integration
 - Synthesis
 - Backend
- Top-level verification
 - Simulation environment
 - Assembler programs
 - In-circuit emulation
- Technical documentation
- Social skills: Student communication
The Project: Phase C (W14)

- Extended top-level verification
 - Code coverage (ModelSim)
 - Functional coverage (Automatic test programs)
- Critical path and architecture optimizations
The Project: After the Seminar

- ASIC manufacturing
 - 2003, 2005 and 2006
 - Europractice / Austriamicrosystems AG
 - 0.35 µm CMOS
 - One chip per student

- Testing
 - *IMS-micro* evaluation board
 - Maximum running frequency: 60 MHz (2006)
Evaluation (I)

- Seminar scheduling concept
 - Synchronized with the *IMS-micro* design
 - Tutorial-based

- Supervision concept
 - One tutor per student group
 - Status meetings

- Student prerequisite
 - Pre-selection of participants by written exams
 - Examination results used to divide students into groups
Evaluation (II)

- **IMS-micro vs. LCR**
 - **LCR**
 - ✗ dedicated hardware with limited functionality
 - ✓ clearly structured modules with similar complexity
 - ✗ only FSM-based modules with strong dependencies
 - **IMS-micro**
 - ✓ programmable hardware design
 - ✓ more sophisticated design with fewer dependencies
 - ✓ knowledge of the whole architecture required
 - ✓ higher acceptance due to a practical design

- **IMS-micro** is more suited to teach students all aspects of the design process
Conclusions

- Project-oriented ASIC design course
 - Tutorials and practical work separated
 - Whole integrated circuit design flow
 - Improve social skills by giving responsibilities

- Pros vs. cons of ChipDesign
 - Programmable hardware design
 - System level aspects
 - Elevated cost (equipments, EDA-tools, tutors,…)

- After the project, students are ready to design integrated circuits of higher complexity